diff libtommath/bn_mp_exptmod.c @ 284:eed26cff980b

propagate from branch 'au.asn.ucc.matt.ltm.dropbear' (head 6c790cad5a7fa866ad062cb3a0c279f7ba788583) to branch 'au.asn.ucc.matt.dropbear' (head fff0894a0399405a9410ea1c6d118f342cf2aa64)
author Matt Johnston <matt@ucc.asn.au>
date Wed, 08 Mar 2006 13:23:49 +0000
parents
children cd14c94fe89c 5ff8218bcee9
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/libtommath/bn_mp_exptmod.c	Wed Mar 08 13:23:49 2006 +0000
@@ -0,0 +1,108 @@
+#include <tommath.h>
+#ifdef BN_MP_EXPTMOD_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
+ */
+
+
+/* this is a shell function that calls either the normal or Montgomery
+ * exptmod functions.  Originally the call to the montgomery code was
+ * embedded in the normal function but that wasted alot of stack space
+ * for nothing (since 99% of the time the Montgomery code would be called)
+ */
+int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
+{
+  int dr;
+
+  /* modulus P must be positive */
+  if (P->sign == MP_NEG) {
+     return MP_VAL;
+  }
+
+  /* if exponent X is negative we have to recurse */
+  if (X->sign == MP_NEG) {
+#ifdef BN_MP_INVMOD_C
+     mp_int tmpG, tmpX;
+     int err;
+
+     /* first compute 1/G mod P */
+     if ((err = mp_init(&tmpG)) != MP_OKAY) {
+        return err;
+     }
+     if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) {
+        mp_clear(&tmpG);
+        return err;
+     }
+
+     /* now get |X| */
+     if ((err = mp_init(&tmpX)) != MP_OKAY) {
+        mp_clear(&tmpG);
+        return err;
+     }
+     if ((err = mp_abs(X, &tmpX)) != MP_OKAY) {
+        mp_clear_multi(&tmpG, &tmpX, NULL);
+        return err;
+     }
+
+     /* and now compute (1/G)**|X| instead of G**X [X < 0] */
+     err = mp_exptmod(&tmpG, &tmpX, P, Y);
+     mp_clear_multi(&tmpG, &tmpX, NULL);
+     return err;
+#else 
+     /* no invmod */
+     return MP_VAL;
+#endif
+  }
+
+/* modified diminished radix reduction */
+#if defined(BN_MP_REDUCE_IS_2K_L_C) && defined(BN_MP_REDUCE_2K_L_C)
+  if (mp_reduce_is_2k_l(P) == MP_YES) {
+     return s_mp_exptmod(G, X, P, Y, 1);
+  }
+#endif
+
+#ifdef BN_MP_DR_IS_MODULUS_C
+  /* is it a DR modulus? */
+  dr = mp_dr_is_modulus(P);
+#else
+  /* default to no */
+  dr = 0;
+#endif
+
+#ifdef BN_MP_REDUCE_IS_2K_C
+  /* if not, is it a unrestricted DR modulus? */
+  if (dr == 0) {
+     dr = mp_reduce_is_2k(P) << 1;
+  }
+#endif
+    
+  /* if the modulus is odd or dr != 0 use the montgomery method */
+#ifdef BN_MP_EXPTMOD_FAST_C
+  if (mp_isodd (P) == 1 || dr !=  0) {
+    return mp_exptmod_fast (G, X, P, Y, dr);
+  } else {
+#endif
+#ifdef BN_S_MP_EXPTMOD_C
+    /* otherwise use the generic Barrett reduction technique */
+    return s_mp_exptmod (G, X, P, Y, 0);
+#else
+    /* no exptmod for evens */
+    return MP_VAL;
+#endif
+#ifdef BN_MP_EXPTMOD_FAST_C
+  }
+#endif
+}
+
+#endif