Mercurial > dropbear
diff libtommath/bn_mp_prime_miller_rabin.c @ 284:eed26cff980b
propagate from branch 'au.asn.ucc.matt.ltm.dropbear' (head 6c790cad5a7fa866ad062cb3a0c279f7ba788583)
to branch 'au.asn.ucc.matt.dropbear' (head fff0894a0399405a9410ea1c6d118f342cf2aa64)
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Wed, 08 Mar 2006 13:23:49 +0000 |
parents | |
children | 5ff8218bcee9 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/libtommath/bn_mp_prime_miller_rabin.c Wed Mar 08 13:23:49 2006 +0000 @@ -0,0 +1,99 @@ +#include <tommath.h> +#ifdef BN_MP_PRIME_MILLER_RABIN_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ + +/* Miller-Rabin test of "a" to the base of "b" as described in + * HAC pp. 139 Algorithm 4.24 + * + * Sets result to 0 if definitely composite or 1 if probably prime. + * Randomly the chance of error is no more than 1/4 and often + * very much lower. + */ +int mp_prime_miller_rabin (mp_int * a, mp_int * b, int *result) +{ + mp_int n1, y, r; + int s, j, err; + + /* default */ + *result = MP_NO; + + /* ensure b > 1 */ + if (mp_cmp_d(b, 1) != MP_GT) { + return MP_VAL; + } + + /* get n1 = a - 1 */ + if ((err = mp_init_copy (&n1, a)) != MP_OKAY) { + return err; + } + if ((err = mp_sub_d (&n1, 1, &n1)) != MP_OKAY) { + goto LBL_N1; + } + + /* set 2**s * r = n1 */ + if ((err = mp_init_copy (&r, &n1)) != MP_OKAY) { + goto LBL_N1; + } + + /* count the number of least significant bits + * which are zero + */ + s = mp_cnt_lsb(&r); + + /* now divide n - 1 by 2**s */ + if ((err = mp_div_2d (&r, s, &r, NULL)) != MP_OKAY) { + goto LBL_R; + } + + /* compute y = b**r mod a */ + if ((err = mp_init (&y)) != MP_OKAY) { + goto LBL_R; + } + if ((err = mp_exptmod (b, &r, a, &y)) != MP_OKAY) { + goto LBL_Y; + } + + /* if y != 1 and y != n1 do */ + if (mp_cmp_d (&y, 1) != MP_EQ && mp_cmp (&y, &n1) != MP_EQ) { + j = 1; + /* while j <= s-1 and y != n1 */ + while ((j <= (s - 1)) && mp_cmp (&y, &n1) != MP_EQ) { + if ((err = mp_sqrmod (&y, a, &y)) != MP_OKAY) { + goto LBL_Y; + } + + /* if y == 1 then composite */ + if (mp_cmp_d (&y, 1) == MP_EQ) { + goto LBL_Y; + } + + ++j; + } + + /* if y != n1 then composite */ + if (mp_cmp (&y, &n1) != MP_EQ) { + goto LBL_Y; + } + } + + /* probably prime now */ + *result = MP_YES; +LBL_Y:mp_clear (&y); +LBL_R:mp_clear (&r); +LBL_N1:mp_clear (&n1); + return err; +} +#endif