diff libtommath/bn_mp_sqrtmod_prime.c @ 1655:f52919ffd3b1

update ltm to 1.1.0 and enable FIPS 186.4 compliant key-generation (#79) * make key-generation compliant to FIPS 186.4 * fix includes in tommath_class.h * update fuzzcorpus instead of error-out * fixup fuzzing make-targets * update Makefile.in * apply necessary patches to ltm sources * clean-up not required ltm files * update to vanilla ltm 1.1.0 this already only contains the required files * remove set/get double
author Steffen Jaeckel <s_jaeckel@gmx.de>
date Mon, 16 Sep 2019 15:50:38 +0200
parents 60fc6476e044
children 1051e4eea25a
line wrap: on
line diff
--- a/libtommath/bn_mp_sqrtmod_prime.c	Wed May 15 21:59:45 2019 +0800
+++ b/libtommath/bn_mp_sqrtmod_prime.c	Mon Sep 16 15:50:38 2019 +0200
@@ -1,12 +1,15 @@
-#include <tommath_private.h>
+#include "tommath_private.h"
 #ifdef BN_MP_SQRTMOD_PRIME_C
 /* LibTomMath, multiple-precision integer library -- Tom St Denis
  *
  * LibTomMath is a library that provides multiple-precision
  * integer arithmetic as well as number theoretic functionality.
  *
- * The library is free for all purposes without any express
- * guarantee it works.
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * SPDX-License-Identifier: Unlicense
  */
 
 /* Tonelli-Shanks algorithm
@@ -15,110 +18,114 @@
  *
  */
 
-int mp_sqrtmod_prime(mp_int *n, mp_int *prime, mp_int *ret)
+int mp_sqrtmod_prime(const mp_int *n, const mp_int *prime, mp_int *ret)
 {
-  int res, legendre;
-  mp_int t1, C, Q, S, Z, M, T, R, two;
-  mp_digit i;
-
-  /* first handle the simple cases */
-  if (mp_cmp_d(n, 0) == MP_EQ) {
-    mp_zero(ret);
-    return MP_OKAY;
-  }
-  if (mp_cmp_d(prime, 2) == MP_EQ)                              return MP_VAL; /* prime must be odd */
-  if ((res = mp_jacobi(n, prime, &legendre)) != MP_OKAY)        return res;
-  if (legendre == -1)                                           return MP_VAL; /* quadratic non-residue mod prime */
+   int res, legendre;
+   mp_int t1, C, Q, S, Z, M, T, R, two;
+   mp_digit i;
 
-  if ((res = mp_init_multi(&t1, &C, &Q, &S, &Z, &M, &T, &R, &two, NULL)) != MP_OKAY) {
-	return res;
-  }
-
-  /* SPECIAL CASE: if prime mod 4 == 3
-   * compute directly: res = n^(prime+1)/4 mod prime
-   * Handbook of Applied Cryptography algorithm 3.36
-   */
-  if ((res = mp_mod_d(prime, 4, &i)) != MP_OKAY)                goto cleanup;
-  if (i == 3) {
-    if ((res = mp_add_d(prime, 1, &t1)) != MP_OKAY)             goto cleanup;
-    if ((res = mp_div_2(&t1, &t1)) != MP_OKAY)                  goto cleanup;
-    if ((res = mp_div_2(&t1, &t1)) != MP_OKAY)                  goto cleanup;
-    if ((res = mp_exptmod(n, &t1, prime, ret)) != MP_OKAY)      goto cleanup;
-    res = MP_OKAY;
-    goto cleanup;
-  }
-
-  /* NOW: Tonelli-Shanks algorithm */
+   /* first handle the simple cases */
+   if (mp_cmp_d(n, 0uL) == MP_EQ) {
+      mp_zero(ret);
+      return MP_OKAY;
+   }
+   if (mp_cmp_d(prime, 2uL) == MP_EQ)                            return MP_VAL; /* prime must be odd */
+   if ((res = mp_jacobi(n, prime, &legendre)) != MP_OKAY)        return res;
+   if (legendre == -1)                                           return MP_VAL; /* quadratic non-residue mod prime */
 
-  /* factor out powers of 2 from prime-1, defining Q and S as: prime-1 = Q*2^S */
-  if ((res = mp_copy(prime, &Q)) != MP_OKAY)                    goto cleanup;
-  if ((res = mp_sub_d(&Q, 1, &Q)) != MP_OKAY)                   goto cleanup;
-  /* Q = prime - 1 */
-  mp_zero(&S);
-  /* S = 0 */
-  while (mp_iseven(&Q) != MP_NO) {
-    if ((res = mp_div_2(&Q, &Q)) != MP_OKAY)                    goto cleanup;
-    /* Q = Q / 2 */
-    if ((res = mp_add_d(&S, 1, &S)) != MP_OKAY)                 goto cleanup;
-    /* S = S + 1 */
-  }
-
-  /* find a Z such that the Legendre symbol (Z|prime) == -1 */
-  if ((res = mp_set_int(&Z, 2)) != MP_OKAY)                     goto cleanup;
-  /* Z = 2 */
-  while(1) {
-    if ((res = mp_jacobi(&Z, prime, &legendre)) != MP_OKAY)     goto cleanup;
-    if (legendre == -1) break;
-    if ((res = mp_add_d(&Z, 1, &Z)) != MP_OKAY)                 goto cleanup;
-    /* Z = Z + 1 */
-  }
+   if ((res = mp_init_multi(&t1, &C, &Q, &S, &Z, &M, &T, &R, &two, NULL)) != MP_OKAY) {
+      return res;
+   }
 
-  if ((res = mp_exptmod(&Z, &Q, prime, &C)) != MP_OKAY)         goto cleanup;
-  /* C = Z ^ Q mod prime */
-  if ((res = mp_add_d(&Q, 1, &t1)) != MP_OKAY)                  goto cleanup;
-  if ((res = mp_div_2(&t1, &t1)) != MP_OKAY)                    goto cleanup;
-  /* t1 = (Q + 1) / 2 */
-  if ((res = mp_exptmod(n, &t1, prime, &R)) != MP_OKAY)         goto cleanup;
-  /* R = n ^ ((Q + 1) / 2) mod prime */
-  if ((res = mp_exptmod(n, &Q, prime, &T)) != MP_OKAY)          goto cleanup;
-  /* T = n ^ Q mod prime */
-  if ((res = mp_copy(&S, &M)) != MP_OKAY)                       goto cleanup;
-  /* M = S */
-  if ((res = mp_set_int(&two, 2)) != MP_OKAY)                   goto cleanup;
-
-  res = MP_VAL;
-  while (1) {
-    if ((res = mp_copy(&T, &t1)) != MP_OKAY)                    goto cleanup;
-    i = 0;
-    while (1) {
-      if (mp_cmp_d(&t1, 1) == MP_EQ) break;
-      if ((res = mp_exptmod(&t1, &two, prime, &t1)) != MP_OKAY) goto cleanup;
-      i++;
-    }
-    if (i == 0) {
-      if ((res = mp_copy(&R, ret)) != MP_OKAY)                  goto cleanup;
+   /* SPECIAL CASE: if prime mod 4 == 3
+    * compute directly: res = n^(prime+1)/4 mod prime
+    * Handbook of Applied Cryptography algorithm 3.36
+    */
+   if ((res = mp_mod_d(prime, 4uL, &i)) != MP_OKAY)               goto cleanup;
+   if (i == 3u) {
+      if ((res = mp_add_d(prime, 1uL, &t1)) != MP_OKAY)           goto cleanup;
+      if ((res = mp_div_2(&t1, &t1)) != MP_OKAY)                  goto cleanup;
+      if ((res = mp_div_2(&t1, &t1)) != MP_OKAY)                  goto cleanup;
+      if ((res = mp_exptmod(n, &t1, prime, ret)) != MP_OKAY)      goto cleanup;
       res = MP_OKAY;
       goto cleanup;
-    }
-    if ((res = mp_sub_d(&M, i, &t1)) != MP_OKAY)                goto cleanup;
-    if ((res = mp_sub_d(&t1, 1, &t1)) != MP_OKAY)               goto cleanup;
-    if ((res = mp_exptmod(&two, &t1, prime, &t1)) != MP_OKAY)   goto cleanup;
-    /* t1 = 2 ^ (M - i - 1) */
-    if ((res = mp_exptmod(&C, &t1, prime, &t1)) != MP_OKAY)     goto cleanup;
-    /* t1 = C ^ (2 ^ (M - i - 1)) mod prime */
-    if ((res = mp_sqrmod(&t1, prime, &C)) != MP_OKAY)           goto cleanup;
-    /* C = (t1 * t1) mod prime */
-    if ((res = mp_mulmod(&R, &t1, prime, &R)) != MP_OKAY)       goto cleanup;
-    /* R = (R * t1) mod prime */
-    if ((res = mp_mulmod(&T, &C, prime, &T)) != MP_OKAY)        goto cleanup;
-    /* T = (T * C) mod prime */
-    mp_set(&M, i);
-    /* M = i */
-  }
+   }
+
+   /* NOW: Tonelli-Shanks algorithm */
+
+   /* factor out powers of 2 from prime-1, defining Q and S as: prime-1 = Q*2^S */
+   if ((res = mp_copy(prime, &Q)) != MP_OKAY)                    goto cleanup;
+   if ((res = mp_sub_d(&Q, 1uL, &Q)) != MP_OKAY)                 goto cleanup;
+   /* Q = prime - 1 */
+   mp_zero(&S);
+   /* S = 0 */
+   while (mp_iseven(&Q) != MP_NO) {
+      if ((res = mp_div_2(&Q, &Q)) != MP_OKAY)                    goto cleanup;
+      /* Q = Q / 2 */
+      if ((res = mp_add_d(&S, 1uL, &S)) != MP_OKAY)               goto cleanup;
+      /* S = S + 1 */
+   }
+
+   /* find a Z such that the Legendre symbol (Z|prime) == -1 */
+   if ((res = mp_set_int(&Z, 2uL)) != MP_OKAY)                    goto cleanup;
+   /* Z = 2 */
+   while (1) {
+      if ((res = mp_jacobi(&Z, prime, &legendre)) != MP_OKAY)     goto cleanup;
+      if (legendre == -1) break;
+      if ((res = mp_add_d(&Z, 1uL, &Z)) != MP_OKAY)               goto cleanup;
+      /* Z = Z + 1 */
+   }
+
+   if ((res = mp_exptmod(&Z, &Q, prime, &C)) != MP_OKAY)         goto cleanup;
+   /* C = Z ^ Q mod prime */
+   if ((res = mp_add_d(&Q, 1uL, &t1)) != MP_OKAY)                goto cleanup;
+   if ((res = mp_div_2(&t1, &t1)) != MP_OKAY)                    goto cleanup;
+   /* t1 = (Q + 1) / 2 */
+   if ((res = mp_exptmod(n, &t1, prime, &R)) != MP_OKAY)         goto cleanup;
+   /* R = n ^ ((Q + 1) / 2) mod prime */
+   if ((res = mp_exptmod(n, &Q, prime, &T)) != MP_OKAY)          goto cleanup;
+   /* T = n ^ Q mod prime */
+   if ((res = mp_copy(&S, &M)) != MP_OKAY)                       goto cleanup;
+   /* M = S */
+   if ((res = mp_set_int(&two, 2uL)) != MP_OKAY)                 goto cleanup;
+
+   res = MP_VAL;
+   while (1) {
+      if ((res = mp_copy(&T, &t1)) != MP_OKAY)                    goto cleanup;
+      i = 0;
+      while (1) {
+         if (mp_cmp_d(&t1, 1uL) == MP_EQ) break;
+         if ((res = mp_exptmod(&t1, &two, prime, &t1)) != MP_OKAY) goto cleanup;
+         i++;
+      }
+      if (i == 0u) {
+         if ((res = mp_copy(&R, ret)) != MP_OKAY)                  goto cleanup;
+         res = MP_OKAY;
+         goto cleanup;
+      }
+      if ((res = mp_sub_d(&M, i, &t1)) != MP_OKAY)                goto cleanup;
+      if ((res = mp_sub_d(&t1, 1uL, &t1)) != MP_OKAY)             goto cleanup;
+      if ((res = mp_exptmod(&two, &t1, prime, &t1)) != MP_OKAY)   goto cleanup;
+      /* t1 = 2 ^ (M - i - 1) */
+      if ((res = mp_exptmod(&C, &t1, prime, &t1)) != MP_OKAY)     goto cleanup;
+      /* t1 = C ^ (2 ^ (M - i - 1)) mod prime */
+      if ((res = mp_sqrmod(&t1, prime, &C)) != MP_OKAY)           goto cleanup;
+      /* C = (t1 * t1) mod prime */
+      if ((res = mp_mulmod(&R, &t1, prime, &R)) != MP_OKAY)       goto cleanup;
+      /* R = (R * t1) mod prime */
+      if ((res = mp_mulmod(&T, &C, prime, &T)) != MP_OKAY)        goto cleanup;
+      /* T = (T * C) mod prime */
+      mp_set(&M, i);
+      /* M = i */
+   }
 
 cleanup:
-  mp_clear_multi(&t1, &C, &Q, &S, &Z, &M, &T, &R, &two, NULL);
-  return res;
+   mp_clear_multi(&t1, &C, &Q, &S, &Z, &M, &T, &R, &two, NULL);
+   return res;
 }
 
 #endif
+
+/* ref:         HEAD -> master, tag: v1.1.0 */
+/* git commit:  08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
+/* commit time: 2019-01-28 20:32:32 +0100 */