diff libtommath/tommath.h @ 1655:f52919ffd3b1

update ltm to 1.1.0 and enable FIPS 186.4 compliant key-generation (#79) * make key-generation compliant to FIPS 186.4 * fix includes in tommath_class.h * update fuzzcorpus instead of error-out * fixup fuzzing make-targets * update Makefile.in * apply necessary patches to ltm sources * clean-up not required ltm files * update to vanilla ltm 1.1.0 this already only contains the required files * remove set/get double
author Steffen Jaeckel <s_jaeckel@gmx.de>
date Mon, 16 Sep 2019 15:50:38 +0200
parents 8bba51a55704
children 1051e4eea25a
line wrap: on
line diff
--- a/libtommath/tommath.h	Wed May 15 21:59:45 2019 +0800
+++ b/libtommath/tommath.h	Mon Sep 16 15:50:38 2019 +0200
@@ -7,10 +7,7 @@
  * Michael Fromberger but has been written from scratch with
  * additional optimizations in place.
  *
- * The library is free for all purposes without any express
- * guarantee it works.
- *
- * Tom St Denis, [email protected], http://math.libtomcrypt.com
+ * SPDX-License-Identifier: Unlicense
  */
 #ifndef BN_H_
 #define BN_H_
@@ -26,6 +23,11 @@
 extern "C" {
 #endif
 
+/* MS Visual C++ doesn't have a 128bit type for words, so fall back to 32bit MPI's (where words are 64bit) */
+#if defined(_MSC_VER) || defined(__LLP64__) || defined(__e2k__) || defined(__LCC__)
+#   define MP_32BIT
+#endif
+
 /* detect 64-bit mode if possible */
 #if defined(__x86_64__) || defined(_M_X64) || defined(_M_AMD64) || \
     defined(__powerpc64__) || defined(__ppc64__) || defined(__PPC64__) || \
@@ -33,9 +35,15 @@
     defined(__sparcv9) || defined(__sparc_v9__) || defined(__sparc64__) || \
     defined(__ia64) || defined(__ia64__) || defined(__itanium__) || defined(_M_IA64) || \
     defined(__LP64__) || defined(_LP64) || defined(__64BIT__)
-   #if !(defined(MP_32BIT) || defined(MP_16BIT) || defined(MP_8BIT))
-      #define MP_64BIT
-   #endif
+#   if !(defined(MP_32BIT) || defined(MP_16BIT) || defined(MP_8BIT))
+#      if defined(__GNUC__)
+/* we support 128bit integers only via: __attribute__((mode(TI))) */
+#         define MP_64BIT
+#      else
+/* otherwise we fall back to MP_32BIT even on 64bit platforms */
+#         define MP_32BIT
+#      endif
+#   endif
 #endif
 
 /* some default configurations.
@@ -47,68 +55,47 @@
  * [any size beyond that is ok provided it doesn't overflow the data type]
  */
 #ifdef MP_8BIT
-   typedef uint8_t              mp_digit;
-   typedef uint16_t             mp_word;
-#define MP_SIZEOF_MP_DIGIT      1
-#ifdef DIGIT_BIT
-#error You must not define DIGIT_BIT when using MP_8BIT
-#endif
+typedef uint8_t              mp_digit;
+typedef uint16_t             mp_word;
+#   define MP_SIZEOF_MP_DIGIT 1
+#   ifdef DIGIT_BIT
+#      error You must not define DIGIT_BIT when using MP_8BIT
+#   endif
 #elif defined(MP_16BIT)
-   typedef uint16_t             mp_digit;
-   typedef uint32_t             mp_word;
-#define MP_SIZEOF_MP_DIGIT      2
-#ifdef DIGIT_BIT
-#error You must not define DIGIT_BIT when using MP_16BIT
-#endif
+typedef uint16_t             mp_digit;
+typedef uint32_t             mp_word;
+#   define MP_SIZEOF_MP_DIGIT 2
+#   ifdef DIGIT_BIT
+#      error You must not define DIGIT_BIT when using MP_16BIT
+#   endif
 #elif defined(MP_64BIT)
-   /* for GCC only on supported platforms */
-   typedef uint64_t mp_digit;
-#if defined(_WIN32)
-   typedef unsigned __int128    mp_word;
-#elif defined(__GNUC__)
-   typedef unsigned long        mp_word __attribute__ ((mode(TI)));
+/* for GCC only on supported platforms */
+typedef uint64_t mp_digit;
+typedef unsigned long        mp_word __attribute__((mode(TI)));
+#   define DIGIT_BIT 60
 #else
-   /* it seems you have a problem
-    * but we assume you can somewhere define your own uint128_t */
-   typedef uint128_t            mp_word;
-#endif
+/* this is the default case, 28-bit digits */
 
-   #define DIGIT_BIT            60
-#else
-   /* this is the default case, 28-bit digits */
+/* this is to make porting into LibTomCrypt easier :-) */
+typedef uint32_t             mp_digit;
+typedef uint64_t             mp_word;
 
-   /* this is to make porting into LibTomCrypt easier :-) */
-   typedef uint32_t             mp_digit;
-   typedef uint64_t             mp_word;
-
-#ifdef MP_31BIT
-   /* this is an extension that uses 31-bit digits */
-   #define DIGIT_BIT            31
-#else
-   /* default case is 28-bit digits, defines MP_28BIT as a handy macro to test */
-   #define DIGIT_BIT            28
-   #define MP_28BIT
-#endif
+#   ifdef MP_31BIT
+/* this is an extension that uses 31-bit digits */
+#      define DIGIT_BIT 31
+#   else
+/* default case is 28-bit digits, defines MP_28BIT as a handy macro to test */
+#      define DIGIT_BIT 28
+#      define MP_28BIT
+#   endif
 #endif
 
 /* otherwise the bits per digit is calculated automatically from the size of a mp_digit */
 #ifndef DIGIT_BIT
-   #define DIGIT_BIT     (((CHAR_BIT * MP_SIZEOF_MP_DIGIT) - 1))  /* bits per digit */
-   typedef uint_least32_t mp_min_u32;
+#   define DIGIT_BIT (((CHAR_BIT * MP_SIZEOF_MP_DIGIT) - 1))  /* bits per digit */
+typedef uint_least32_t mp_min_u32;
 #else
-   typedef mp_digit mp_min_u32;
-#endif
-
-/* use arc4random on platforms that support it */
-#if defined(__FreeBSD__) || defined(__OpenBSD__) || defined(__NetBSD__) || defined(__DragonFly__)
-    #define MP_GEN_RANDOM()    arc4random()
-    #define MP_GEN_RANDOM_MAX  0xffffffff
-#endif
-
-/* use rand() as fall-back if there's no better rand function */
-#ifndef MP_GEN_RANDOM
-    #define MP_GEN_RANDOM()    rand()
-    #define MP_GEN_RANDOM_MAX  RAND_MAX
+typedef mp_digit mp_min_u32;
 #endif
 
 #define MP_DIGIT_BIT     DIGIT_BIT
@@ -127,6 +114,7 @@
 #define MP_MEM        -2  /* out of mem */
 #define MP_VAL        -3  /* invalid input */
 #define MP_RANGE      MP_VAL
+#define MP_ITER       -4  /* Max. iterations reached */
 
 #define MP_YES        1   /* yes response */
 #define MP_NO         0   /* no response */
@@ -140,38 +128,38 @@
 
 /* you'll have to tune these... */
 extern int KARATSUBA_MUL_CUTOFF,
-           KARATSUBA_SQR_CUTOFF,
-           TOOM_MUL_CUTOFF,
-           TOOM_SQR_CUTOFF;
+       KARATSUBA_SQR_CUTOFF,
+       TOOM_MUL_CUTOFF,
+       TOOM_SQR_CUTOFF;
 
 /* define this to use lower memory usage routines (exptmods mostly) */
 /* #define MP_LOW_MEM */
 
 /* default precision */
 #ifndef MP_PREC
-   #ifndef MP_LOW_MEM
-      #define MP_PREC                 32     /* default digits of precision */
-   #else
-      #define MP_PREC                 8      /* default digits of precision */
-   #endif
+#   ifndef MP_LOW_MEM
+#      define MP_PREC 32        /* default digits of precision */
+#   else
+#      define MP_PREC 8         /* default digits of precision */
+#   endif
 #endif
 
 /* size of comba arrays, should be at least 2 * 2**(BITS_PER_WORD - BITS_PER_DIGIT*2) */
-#define MP_WARRAY               (1 << (((sizeof(mp_word) * CHAR_BIT) - (2 * DIGIT_BIT)) + 1))
+#define MP_WARRAY               (1u << (((sizeof(mp_word) * CHAR_BIT) - (2 * DIGIT_BIT)) + 1))
 
 /* the infamous mp_int structure */
 typedef struct  {
-    int used, alloc, sign;
-    mp_digit *dp;
+   int used, alloc, sign;
+   mp_digit *dp;
 } mp_int;
 
 /* callback for mp_prime_random, should fill dst with random bytes and return how many read [upto len] */
 typedef int ltm_prime_callback(unsigned char *dst, int len, void *dat);
 
 
-#define USED(m)    ((m)->used)
-#define DIGIT(m,k) ((m)->dp[(k)])
-#define SIGN(m)    ((m)->sign)
+#define USED(m)     ((m)->used)
+#define DIGIT(m, k) ((m)->dp[(k)])
+#define SIGN(m)     ((m)->sign)
 
 /* error code to char* string */
 const char *mp_error_to_string(int code);
@@ -203,7 +191,7 @@
 
 /* ---> Basic Manipulations <--- */
 #define mp_iszero(a) (((a)->used == 0) ? MP_YES : MP_NO)
-#define mp_iseven(a) ((((a)->used > 0) && (((a)->dp[0] & 1u) == 0u)) ? MP_YES : MP_NO)
+#define mp_iseven(a) ((((a)->used == 0) || (((a)->dp[0] & 1u) == 0u)) ? MP_YES : MP_NO)
 #define mp_isodd(a)  ((((a)->used > 0) && (((a)->dp[0] & 1u) == 1u)) ? MP_YES : MP_NO)
 #define mp_isneg(a)  (((a)->sign != MP_ZPOS) ? MP_YES : MP_NO)
 
@@ -223,34 +211,34 @@
 int mp_set_long_long(mp_int *a, unsigned long long b);
 
 /* get a 32-bit value */
-unsigned long mp_get_int(mp_int * a);
+unsigned long mp_get_int(const mp_int *a);
 
 /* get a platform dependent unsigned long value */
-unsigned long mp_get_long(mp_int * a);
+unsigned long mp_get_long(const mp_int *a);
 
 /* get a platform dependent unsigned long long value */
-unsigned long long mp_get_long_long(mp_int * a);
+unsigned long long mp_get_long_long(const mp_int *a);
 
 /* initialize and set a digit */
-int mp_init_set (mp_int * a, mp_digit b);
+int mp_init_set(mp_int *a, mp_digit b);
 
 /* initialize and set 32-bit value */
-int mp_init_set_int (mp_int * a, unsigned long b);
+int mp_init_set_int(mp_int *a, unsigned long b);
 
 /* copy, b = a */
-int mp_copy(mp_int *a, mp_int *b);
+int mp_copy(const mp_int *a, mp_int *b);
 
 /* inits and copies, a = b */
-int mp_init_copy(mp_int *a, mp_int *b);
+int mp_init_copy(mp_int *a, const mp_int *b);
 
 /* trim unused digits */
 void mp_clamp(mp_int *a);
 
 /* import binary data */
-int mp_import(mp_int* rop, size_t count, int order, size_t size, int endian, size_t nails, const void* op);
+int mp_import(mp_int *rop, size_t count, int order, size_t size, int endian, size_t nails, const void *op);
 
 /* export binary data */
-int mp_export(void* rop, size_t* countp, int order, size_t size, int endian, size_t nails, mp_int* op);
+int mp_export(void *rop, size_t *countp, int order, size_t size, int endian, size_t nails, const mp_int *op);
 
 /* ---> digit manipulation <--- */
 
@@ -261,234 +249,285 @@
 int mp_lshd(mp_int *a, int b);
 
 /* c = a / 2**b, implemented as c = a >> b */
-int mp_div_2d(mp_int *a, int b, mp_int *c, mp_int *d);
+int mp_div_2d(const mp_int *a, int b, mp_int *c, mp_int *d);
 
 /* b = a/2 */
-int mp_div_2(mp_int *a, mp_int *b);
+int mp_div_2(const mp_int *a, mp_int *b);
 
 /* c = a * 2**b, implemented as c = a << b */
-int mp_mul_2d(mp_int *a, int b, mp_int *c);
+int mp_mul_2d(const mp_int *a, int b, mp_int *c);
 
 /* b = a*2 */
-int mp_mul_2(mp_int *a, mp_int *b);
+int mp_mul_2(const mp_int *a, mp_int *b);
 
 /* c = a mod 2**b */
-int mp_mod_2d(mp_int *a, int b, mp_int *c);
+int mp_mod_2d(const mp_int *a, int b, mp_int *c);
 
 /* computes a = 2**b */
 int mp_2expt(mp_int *a, int b);
 
 /* Counts the number of lsbs which are zero before the first zero bit */
-int mp_cnt_lsb(mp_int *a);
+int mp_cnt_lsb(const mp_int *a);
 
 /* I Love Earth! */
 
-/* makes a pseudo-random int of a given size */
+/* makes a pseudo-random mp_int of a given size */
 int mp_rand(mp_int *a, int digits);
+/* makes a pseudo-random small int of a given size */
+int mp_rand_digit(mp_digit *r);
+
+#ifdef MP_PRNG_ENABLE_LTM_RNG
+/* A last resort to provide random data on systems without any of the other
+ * implemented ways to gather entropy.
+ * It is compatible with `rng_get_bytes()` from libtomcrypt so you could
+ * provide that one and then set `ltm_rng = rng_get_bytes;` */
+extern unsigned long (*ltm_rng)(unsigned char *out, unsigned long outlen, void (*callback)(void));
+extern void (*ltm_rng_callback)(void);
+#endif
 
 /* ---> binary operations <--- */
 /* c = a XOR b  */
-int mp_xor(mp_int *a, mp_int *b, mp_int *c);
+int mp_xor(const mp_int *a, const mp_int *b, mp_int *c);
 
 /* c = a OR b */
-int mp_or(mp_int *a, mp_int *b, mp_int *c);
+int mp_or(const mp_int *a, const mp_int *b, mp_int *c);
 
 /* c = a AND b */
-int mp_and(mp_int *a, mp_int *b, mp_int *c);
+int mp_and(const mp_int *a, const mp_int *b, mp_int *c);
+
+/* Checks the bit at position b and returns MP_YES
+   if the bit is 1, MP_NO if it is 0 and MP_VAL
+   in case of error */
+int mp_get_bit(const mp_int *a, int b);
+
+/* c = a XOR b (two complement) */
+int mp_tc_xor(const mp_int *a, const mp_int *b, mp_int *c);
+
+/* c = a OR b (two complement) */
+int mp_tc_or(const mp_int *a, const mp_int *b, mp_int *c);
+
+/* c = a AND b (two complement) */
+int mp_tc_and(const mp_int *a, const mp_int *b, mp_int *c);
+
+/* right shift (two complement) */
+int mp_tc_div_2d(const mp_int *a, int b, mp_int *c);
 
 /* ---> Basic arithmetic <--- */
 
+/* b = ~a */
+int mp_complement(const mp_int *a, mp_int *b);
+
 /* b = -a */
-int mp_neg(mp_int *a, mp_int *b);
+int mp_neg(const mp_int *a, mp_int *b);
 
 /* b = |a| */
-int mp_abs(mp_int *a, mp_int *b);
+int mp_abs(const mp_int *a, mp_int *b);
 
 /* compare a to b */
-int mp_cmp(mp_int *a, mp_int *b);
+int mp_cmp(const mp_int *a, const mp_int *b);
 
 /* compare |a| to |b| */
-int mp_cmp_mag(mp_int *a, mp_int *b);
+int mp_cmp_mag(const mp_int *a, const mp_int *b);
 
 /* c = a + b */
-int mp_add(mp_int *a, mp_int *b, mp_int *c);
+int mp_add(const mp_int *a, const mp_int *b, mp_int *c);
 
 /* c = a - b */
-int mp_sub(mp_int *a, mp_int *b, mp_int *c);
+int mp_sub(const mp_int *a, const mp_int *b, mp_int *c);
 
 /* c = a * b */
-int mp_mul(mp_int *a, mp_int *b, mp_int *c);
+int mp_mul(const mp_int *a, const mp_int *b, mp_int *c);
 
 /* b = a*a  */
-int mp_sqr(mp_int *a, mp_int *b);
+int mp_sqr(const mp_int *a, mp_int *b);
 
 /* a/b => cb + d == a */
-int mp_div(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
+int mp_div(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d);
 
 /* c = a mod b, 0 <= c < b  */
-int mp_mod(mp_int *a, mp_int *b, mp_int *c);
+int mp_mod(const mp_int *a, const mp_int *b, mp_int *c);
 
 /* ---> single digit functions <--- */
 
 /* compare against a single digit */
-int mp_cmp_d(mp_int *a, mp_digit b);
+int mp_cmp_d(const mp_int *a, mp_digit b);
 
 /* c = a + b */
-int mp_add_d(mp_int *a, mp_digit b, mp_int *c);
+int mp_add_d(const mp_int *a, mp_digit b, mp_int *c);
 
 /* c = a - b */
-int mp_sub_d(mp_int *a, mp_digit b, mp_int *c);
+int mp_sub_d(const mp_int *a, mp_digit b, mp_int *c);
 
 /* c = a * b */
-int mp_mul_d(mp_int *a, mp_digit b, mp_int *c);
+int mp_mul_d(const mp_int *a, mp_digit b, mp_int *c);
 
 /* a/b => cb + d == a */
-int mp_div_d(mp_int *a, mp_digit b, mp_int *c, mp_digit *d);
+int mp_div_d(const mp_int *a, mp_digit b, mp_int *c, mp_digit *d);
 
 /* a/3 => 3c + d == a */
-int mp_div_3(mp_int *a, mp_int *c, mp_digit *d);
+int mp_div_3(const mp_int *a, mp_int *c, mp_digit *d);
 
 /* c = a**b */
-int mp_expt_d(mp_int *a, mp_digit b, mp_int *c);
-int mp_expt_d_ex (mp_int * a, mp_digit b, mp_int * c, int fast);
+int mp_expt_d(const mp_int *a, mp_digit b, mp_int *c);
+int mp_expt_d_ex(const mp_int *a, mp_digit b, mp_int *c, int fast);
 
 /* c = a mod b, 0 <= c < b  */
-int mp_mod_d(mp_int *a, mp_digit b, mp_digit *c);
+int mp_mod_d(const mp_int *a, mp_digit b, mp_digit *c);
 
 /* ---> number theory <--- */
 
 /* d = a + b (mod c) */
-int mp_addmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
+int mp_addmod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d);
 
 /* d = a - b (mod c) */
-int mp_submod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
+int mp_submod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d);
 
 /* d = a * b (mod c) */
-int mp_mulmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
+int mp_mulmod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d);
 
 /* c = a * a (mod b) */
-int mp_sqrmod(mp_int *a, mp_int *b, mp_int *c);
+int mp_sqrmod(const mp_int *a, const mp_int *b, mp_int *c);
 
 /* c = 1/a (mod b) */
-int mp_invmod(mp_int *a, mp_int *b, mp_int *c);
+int mp_invmod(const mp_int *a, const mp_int *b, mp_int *c);
 
 /* c = (a, b) */
-int mp_gcd(mp_int *a, mp_int *b, mp_int *c);
+int mp_gcd(const mp_int *a, const mp_int *b, mp_int *c);
 
 /* produces value such that U1*a + U2*b = U3 */
-int mp_exteuclid(mp_int *a, mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3);
+int mp_exteuclid(const mp_int *a, const mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3);
 
 /* c = [a, b] or (a*b)/(a, b) */
-int mp_lcm(mp_int *a, mp_int *b, mp_int *c);
+int mp_lcm(const mp_int *a, const mp_int *b, mp_int *c);
 
 /* finds one of the b'th root of a, such that |c|**b <= |a|
  *
  * returns error if a < 0 and b is even
  */
-int mp_n_root(mp_int *a, mp_digit b, mp_int *c);
-int mp_n_root_ex (mp_int * a, mp_digit b, mp_int * c, int fast);
+int mp_n_root(const mp_int *a, mp_digit b, mp_int *c);
+int mp_n_root_ex(const mp_int *a, mp_digit b, mp_int *c, int fast);
 
 /* special sqrt algo */
-int mp_sqrt(mp_int *arg, mp_int *ret);
+int mp_sqrt(const mp_int *arg, mp_int *ret);
 
 /* special sqrt (mod prime) */
-int mp_sqrtmod_prime(mp_int *arg, mp_int *prime, mp_int *ret);
+int mp_sqrtmod_prime(const mp_int *n, const mp_int *prime, mp_int *ret);
 
 /* is number a square? */
-int mp_is_square(mp_int *arg, int *ret);
+int mp_is_square(const mp_int *arg, int *ret);
 
 /* computes the jacobi c = (a | n) (or Legendre if b is prime)  */
-int mp_jacobi(mp_int *a, mp_int *n, int *c);
+int mp_jacobi(const mp_int *a, const mp_int *n, int *c);
+
+/* computes the Kronecker symbol c = (a | p) (like jacobi() but with {a,p} in Z */
+int mp_kronecker(const mp_int *a, const mp_int *p, int *c);
 
 /* used to setup the Barrett reduction for a given modulus b */
-int mp_reduce_setup(mp_int *a, mp_int *b);
+int mp_reduce_setup(mp_int *a, const mp_int *b);
 
 /* Barrett Reduction, computes a (mod b) with a precomputed value c
  *
- * Assumes that 0 < a <= b*b, note if 0 > a > -(b*b) then you can merely
- * compute the reduction as -1 * mp_reduce(mp_abs(a)) [pseudo code].
+ * Assumes that 0 < x <= m*m, note if 0 > x > -(m*m) then you can merely
+ * compute the reduction as -1 * mp_reduce(mp_abs(x)) [pseudo code].
  */
-int mp_reduce(mp_int *a, mp_int *b, mp_int *c);
+int mp_reduce(mp_int *x, const mp_int *m, const mp_int *mu);
 
 /* setups the montgomery reduction */
-int mp_montgomery_setup(mp_int *a, mp_digit *mp);
+int mp_montgomery_setup(const mp_int *n, mp_digit *rho);
 
 /* computes a = B**n mod b without division or multiplication useful for
  * normalizing numbers in a Montgomery system.
  */
-int mp_montgomery_calc_normalization(mp_int *a, mp_int *b);
+int mp_montgomery_calc_normalization(mp_int *a, const mp_int *b);
 
 /* computes x/R == x (mod N) via Montgomery Reduction */
-int mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp);
+int mp_montgomery_reduce(mp_int *x, const mp_int *n, mp_digit rho);
 
 /* returns 1 if a is a valid DR modulus */
-int mp_dr_is_modulus(mp_int *a);
+int mp_dr_is_modulus(const mp_int *a);
 
 /* sets the value of "d" required for mp_dr_reduce */
-void mp_dr_setup(mp_int *a, mp_digit *d);
+void mp_dr_setup(const mp_int *a, mp_digit *d);
 
-/* reduces a modulo b using the Diminished Radix method */
-int mp_dr_reduce(mp_int *a, mp_int *b, mp_digit mp);
+/* reduces a modulo n using the Diminished Radix method */
+int mp_dr_reduce(mp_int *x, const mp_int *n, mp_digit k);
 
 /* returns true if a can be reduced with mp_reduce_2k */
-int mp_reduce_is_2k(mp_int *a);
+int mp_reduce_is_2k(const mp_int *a);
 
 /* determines k value for 2k reduction */
-int mp_reduce_2k_setup(mp_int *a, mp_digit *d);
+int mp_reduce_2k_setup(const mp_int *a, mp_digit *d);
 
 /* reduces a modulo b where b is of the form 2**p - k [0 <= a] */
-int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d);
+int mp_reduce_2k(mp_int *a, const mp_int *n, mp_digit d);
 
 /* returns true if a can be reduced with mp_reduce_2k_l */
-int mp_reduce_is_2k_l(mp_int *a);
+int mp_reduce_is_2k_l(const mp_int *a);
 
 /* determines k value for 2k reduction */
-int mp_reduce_2k_setup_l(mp_int *a, mp_int *d);
+int mp_reduce_2k_setup_l(const mp_int *a, mp_int *d);
 
 /* reduces a modulo b where b is of the form 2**p - k [0 <= a] */
-int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d);
+int mp_reduce_2k_l(mp_int *a, const mp_int *n, const mp_int *d);
 
-/* d = a**b (mod c) */
-int mp_exptmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
+/* Y = G**X (mod P) */
+int mp_exptmod(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y);
 
 /* ---> Primes <--- */
 
 /* number of primes */
 #ifdef MP_8BIT
-   #define PRIME_SIZE      31
+#  define PRIME_SIZE 31
 #else
-   #define PRIME_SIZE      256
+#  define PRIME_SIZE 256
 #endif
 
 /* table of first PRIME_SIZE primes */
 extern const mp_digit ltm_prime_tab[PRIME_SIZE];
 
 /* result=1 if a is divisible by one of the first PRIME_SIZE primes */
-int mp_prime_is_divisible(mp_int *a, int *result);
+int mp_prime_is_divisible(const mp_int *a, int *result);
 
 /* performs one Fermat test of "a" using base "b".
  * Sets result to 0 if composite or 1 if probable prime
  */
-int mp_prime_fermat(mp_int *a, mp_int *b, int *result);
+int mp_prime_fermat(const mp_int *a, const mp_int *b, int *result);
 
 /* performs one Miller-Rabin test of "a" using base "b".
  * Sets result to 0 if composite or 1 if probable prime
  */
-int mp_prime_miller_rabin(mp_int *a, mp_int *b, int *result);
+int mp_prime_miller_rabin(const mp_int *a, const mp_int *b, int *result);
 
 /* This gives [for a given bit size] the number of trials required
  * such that Miller-Rabin gives a prob of failure lower than 2^-96
  */
 int mp_prime_rabin_miller_trials(int size);
 
-/* performs t rounds of Miller-Rabin on "a" using the first
- * t prime bases.  Also performs an initial sieve of trial
+/* performs one strong Lucas-Selfridge test of "a".
+ * Sets result to 0 if composite or 1 if probable prime
+ */
+int mp_prime_strong_lucas_selfridge(const mp_int *a, int *result);
+
+/* performs one Frobenius test of "a" as described by Paul Underwood.
+ * Sets result to 0 if composite or 1 if probable prime
+ */
+int mp_prime_frobenius_underwood(const mp_int *N, int *result);
+
+/* performs t random rounds of Miller-Rabin on "a" additional to
+ * bases 2 and 3.  Also performs an initial sieve of trial
  * division.  Determines if "a" is prime with probability
  * of error no more than (1/4)**t.
+ * Both a strong Lucas-Selfridge to complete the BPSW test
+ * and a separate Frobenius test are available at compile time.
+ * With t<0 a deterministic test is run for primes up to
+ * 318665857834031151167461. With t<13 (abs(t)-13) additional
+ * tests with sequential small primes are run starting at 43.
+ * Is Fips 186.4 compliant if called with t as computed by
+ * mp_prime_rabin_miller_trials();
  *
  * Sets result to 1 if probably prime, 0 otherwise
  */
-int mp_prime_is_prime(mp_int *a, int t, int *result);
+int mp_prime_is_prime(const mp_int *a, int t, int *result);
 
 /* finds the next prime after the number "a" using "t" trials
  * of Miller-Rabin.
@@ -524,26 +563,26 @@
 int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback cb, void *dat);
 
 /* ---> radix conversion <--- */
-int mp_count_bits(mp_int *a);
+int mp_count_bits(const mp_int *a);
 
-int mp_unsigned_bin_size(mp_int *a);
+int mp_unsigned_bin_size(const mp_int *a);
 int mp_read_unsigned_bin(mp_int *a, const unsigned char *b, int c);
-int mp_to_unsigned_bin(mp_int *a, unsigned char *b);
-int mp_to_unsigned_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen);
+int mp_to_unsigned_bin(const mp_int *a, unsigned char *b);
+int mp_to_unsigned_bin_n(const mp_int *a, unsigned char *b, unsigned long *outlen);
 
-int mp_signed_bin_size(mp_int *a);
+int mp_signed_bin_size(const mp_int *a);
 int mp_read_signed_bin(mp_int *a, const unsigned char *b, int c);
-int mp_to_signed_bin(mp_int *a,  unsigned char *b);
-int mp_to_signed_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen);
+int mp_to_signed_bin(const mp_int *a,  unsigned char *b);
+int mp_to_signed_bin_n(const mp_int *a, unsigned char *b, unsigned long *outlen);
 
 int mp_read_radix(mp_int *a, const char *str, int radix);
-int mp_toradix(mp_int *a, char *str, int radix);
-int mp_toradix_n(mp_int * a, char *str, int radix, int maxlen);
-int mp_radix_size(mp_int *a, int radix, int *size);
+int mp_toradix(const mp_int *a, char *str, int radix);
+int mp_toradix_n(const mp_int *a, char *str, int radix, int maxlen);
+int mp_radix_size(const mp_int *a, int radix, int *size);
 
 #ifndef LTM_NO_FILE
 int mp_fread(mp_int *a, int radix, FILE *stream);
-int mp_fwrite(mp_int *a, int radix, FILE *stream);
+int mp_fwrite(const mp_int *a, int radix, FILE *stream);
 #endif
 
 #define mp_read_raw(mp, str, len) mp_read_signed_bin((mp), (str), (len))
@@ -559,12 +598,12 @@
 #define mp_tohex(M, S)     mp_toradix((M), (S), 16)
 
 #ifdef __cplusplus
-   }
+}
 #endif
 
 #endif
 
 
-/* ref:         $Format:%D$ */
-/* git commit:  $Format:%H$ */
-/* commit time: $Format:%ai$ */
+/* ref:         HEAD -> master, tag: v1.1.0 */
+/* git commit:  08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
+/* commit time: 2019-01-28 20:32:32 +0100 */