diff bn_fast_mp_invmod.c @ 2:86e0b50a9b58 libtommath-orig ltm-0.30-orig

ltm 0.30 orig import
author Matt Johnston <matt@ucc.asn.au>
date Mon, 31 May 2004 18:25:22 +0000
parents
children d29b64170cf0
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/bn_fast_mp_invmod.c	Mon May 31 18:25:22 2004 +0000
@@ -0,0 +1,143 @@
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, [email protected], http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* computes the modular inverse via binary extended euclidean algorithm, 
+ * that is c = 1/a mod b 
+ *
+ * Based on mp_invmod except this is optimized for the case where b is 
+ * odd as per HAC Note 14.64 on pp. 610
+ */
+int
+fast_mp_invmod (mp_int * a, mp_int * b, mp_int * c)
+{
+  mp_int  x, y, u, v, B, D;
+  int     res, neg;
+
+  /* 2. [modified] b must be odd   */
+  if (mp_iseven (b) == 1) {
+    return MP_VAL;
+  }
+
+  /* init all our temps */
+  if ((res = mp_init_multi(&x, &y, &u, &v, &B, &D, NULL)) != MP_OKAY) {
+     return res;
+  }
+
+  /* x == modulus, y == value to invert */
+  if ((res = mp_copy (b, &x)) != MP_OKAY) {
+    goto __ERR;
+  }
+
+  /* we need y = |a| */
+  if ((res = mp_abs (a, &y)) != MP_OKAY) {
+    goto __ERR;
+  }
+
+  /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
+  if ((res = mp_copy (&x, &u)) != MP_OKAY) {
+    goto __ERR;
+  }
+  if ((res = mp_copy (&y, &v)) != MP_OKAY) {
+    goto __ERR;
+  }
+  mp_set (&D, 1);
+
+top:
+  /* 4.  while u is even do */
+  while (mp_iseven (&u) == 1) {
+    /* 4.1 u = u/2 */
+    if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
+      goto __ERR;
+    }
+    /* 4.2 if B is odd then */
+    if (mp_isodd (&B) == 1) {
+      if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {
+        goto __ERR;
+      }
+    }
+    /* B = B/2 */
+    if ((res = mp_div_2 (&B, &B)) != MP_OKAY) {
+      goto __ERR;
+    }
+  }
+
+  /* 5.  while v is even do */
+  while (mp_iseven (&v) == 1) {
+    /* 5.1 v = v/2 */
+    if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
+      goto __ERR;
+    }
+    /* 5.2 if D is odd then */
+    if (mp_isodd (&D) == 1) {
+      /* D = (D-x)/2 */
+      if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
+        goto __ERR;
+      }
+    }
+    /* D = D/2 */
+    if ((res = mp_div_2 (&D, &D)) != MP_OKAY) {
+      goto __ERR;
+    }
+  }
+
+  /* 6.  if u >= v then */
+  if (mp_cmp (&u, &v) != MP_LT) {
+    /* u = u - v, B = B - D */
+    if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) {
+      goto __ERR;
+    }
+
+    if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) {
+      goto __ERR;
+    }
+  } else {
+    /* v - v - u, D = D - B */
+    if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) {
+      goto __ERR;
+    }
+
+    if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) {
+      goto __ERR;
+    }
+  }
+
+  /* if not zero goto step 4 */
+  if (mp_iszero (&u) == 0) {
+    goto top;
+  }
+
+  /* now a = C, b = D, gcd == g*v */
+
+  /* if v != 1 then there is no inverse */
+  if (mp_cmp_d (&v, 1) != MP_EQ) {
+    res = MP_VAL;
+    goto __ERR;
+  }
+
+  /* b is now the inverse */
+  neg = a->sign;
+  while (D.sign == MP_NEG) {
+    if ((res = mp_add (&D, b, &D)) != MP_OKAY) {
+      goto __ERR;
+    }
+  }
+  mp_exch (&D, c);
+  c->sign = neg;
+  res = MP_OKAY;
+
+__ERR:mp_clear_multi (&x, &y, &u, &v, &B, &D, NULL);
+  return res;
+}