Mercurial > dropbear
view libtommath/bn_mp_prime_fermat.c @ 1357:08f4fa4dc6a0 fuzz
closer to working
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Sat, 20 May 2017 13:23:16 +0800 |
parents | 5ff8218bcee9 |
children | 60fc6476e044 |
line wrap: on
line source
#include <tommath.h> #ifdef BN_MP_PRIME_FERMAT_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, [email protected], http://math.libtomcrypt.com */ /* performs one Fermat test. * * If "a" were prime then b**a == b (mod a) since the order of * the multiplicative sub-group would be phi(a) = a-1. That means * it would be the same as b**(a mod (a-1)) == b**1 == b (mod a). * * Sets result to 1 if the congruence holds, or zero otherwise. */ int mp_prime_fermat (mp_int * a, mp_int * b, int *result) { mp_int t; int err; /* default to composite */ *result = MP_NO; /* ensure b > 1 */ if (mp_cmp_d(b, 1) != MP_GT) { return MP_VAL; } /* init t */ if ((err = mp_init (&t)) != MP_OKAY) { return err; } /* compute t = b**a mod a */ if ((err = mp_exptmod (b, a, a, &t)) != MP_OKAY) { goto LBL_T; } /* is it equal to b? */ if (mp_cmp (&t, b) == MP_EQ) { *result = MP_YES; } err = MP_OKAY; LBL_T:mp_clear (&t); return err; } #endif /* $Source: /cvs/libtom/libtommath/bn_mp_prime_fermat.c,v $ */ /* $Revision: 1.3 $ */ /* $Date: 2006/03/31 14:18:44 $ */