Mercurial > dropbear
view libtomcrypt/demos/tv_gen.c @ 1345:1a3c4ec0f840
add cve and patch link
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Sat, 20 May 2017 10:27:29 +0800 |
parents | 0cbe8f6dbf9e |
children | f849a5ca2efc |
line wrap: on
line source
#include <tomcrypt.h> void reg_algs(void) { int err; #ifdef RIJNDAEL register_cipher (&aes_desc); #endif #ifdef BLOWFISH register_cipher (&blowfish_desc); #endif #ifdef XTEA register_cipher (&xtea_desc); #endif #ifdef RC5 register_cipher (&rc5_desc); #endif #ifdef RC6 register_cipher (&rc6_desc); #endif #ifdef SAFERP register_cipher (&saferp_desc); #endif #ifdef TWOFISH register_cipher (&twofish_desc); #endif #ifdef SAFER register_cipher (&safer_k64_desc); register_cipher (&safer_sk64_desc); register_cipher (&safer_k128_desc); register_cipher (&safer_sk128_desc); #endif #ifdef RC2 register_cipher (&rc2_desc); #endif #ifdef DES register_cipher (&des_desc); register_cipher (&des3_desc); #endif #ifdef CAST5 register_cipher (&cast5_desc); #endif #ifdef NOEKEON register_cipher (&noekeon_desc); #endif #ifdef SKIPJACK register_cipher (&skipjack_desc); #endif #ifdef ANUBIS register_cipher (&anubis_desc); #endif #ifdef KHAZAD register_cipher (&khazad_desc); #endif #ifdef TIGER register_hash (&tiger_desc); #endif #ifdef MD2 register_hash (&md2_desc); #endif #ifdef MD4 register_hash (&md4_desc); #endif #ifdef MD5 register_hash (&md5_desc); #endif #ifdef SHA1 register_hash (&sha1_desc); #endif #ifdef SHA224 register_hash (&sha224_desc); #endif #ifdef SHA256 register_hash (&sha256_desc); #endif #ifdef SHA384 register_hash (&sha384_desc); #endif #ifdef SHA512 register_hash (&sha512_desc); #endif #ifdef RIPEMD128 register_hash (&rmd128_desc); #endif #ifdef RIPEMD160 register_hash (&rmd160_desc); #endif #ifdef WHIRLPOOL register_hash (&whirlpool_desc); #endif #ifdef CHC_HASH register_hash(&chc_desc); if ((err = chc_register(register_cipher(&aes_desc))) != CRYPT_OK) { printf("chc_register error: %s\n", error_to_string(err)); exit(EXIT_FAILURE); } #endif #ifdef USE_LTM ltc_mp = ltm_desc; #elif defined(USE_TFM) ltc_mp = tfm_desc; #elif defined(USE_GMP) ltc_mp = gmp_desc; #else extern ltc_math_descriptor EXT_MATH_LIB; ltc_mp = EXT_MATH_LIB; #endif } void hash_gen(void) { unsigned char md[MAXBLOCKSIZE], *buf; unsigned long outlen, x, y, z; FILE *out; int err; out = fopen("hash_tv.txt", "w"); if (out == NULL) { perror("can't open hash_tv"); } fprintf(out, "Hash Test Vectors:\n\nThese are the hashes of nn bytes '00 01 02 03 .. (nn-1)'\n\n"); for (x = 0; hash_descriptor[x].name != NULL; x++) { buf = XMALLOC(2 * hash_descriptor[x].blocksize + 1); if (buf == NULL) { perror("can't alloc mem"); exit(EXIT_FAILURE); } fprintf(out, "Hash: %s\n", hash_descriptor[x].name); for (y = 0; y <= (hash_descriptor[x].blocksize * 2); y++) { for (z = 0; z < y; z++) { buf[z] = (unsigned char)(z & 255); } outlen = sizeof(md); if ((err = hash_memory(x, buf, y, md, &outlen)) != CRYPT_OK) { printf("hash_memory error: %s\n", error_to_string(err)); exit(EXIT_FAILURE); } fprintf(out, "%3lu: ", y); for (z = 0; z < outlen; z++) { fprintf(out, "%02X", md[z]); } fprintf(out, "\n"); } fprintf(out, "\n"); XFREE(buf); } fclose(out); } void cipher_gen(void) { unsigned char *key, pt[MAXBLOCKSIZE]; unsigned long x, y, z, w; int err, kl, lastkl; FILE *out; symmetric_key skey; out = fopen("cipher_tv.txt", "w"); fprintf(out, "Cipher Test Vectors\n\nThese are test encryptions with key of nn bytes '00 01 02 03 .. (nn-1)' and original PT of the same style.\n" "The output of step N is used as the key and plaintext for step N+1 (key bytes repeated as required to fill the key)\n\n"); for (x = 0; cipher_descriptor[x].name != NULL; x++) { fprintf(out, "Cipher: %s\n", cipher_descriptor[x].name); /* three modes, smallest, medium, large keys */ lastkl = 10000; for (y = 0; y < 3; y++) { switch (y) { case 0: kl = cipher_descriptor[x].min_key_length; break; case 1: kl = (cipher_descriptor[x].min_key_length + cipher_descriptor[x].max_key_length)/2; break; case 2: kl = cipher_descriptor[x].max_key_length; break; } if ((err = cipher_descriptor[x].keysize(&kl)) != CRYPT_OK) { printf("keysize error: %s\n", error_to_string(err)); exit(EXIT_FAILURE); } if (kl == lastkl) break; lastkl = kl; fprintf(out, "Key Size: %d bytes\n", kl); key = XMALLOC(kl); if (key == NULL) { perror("can't malloc memory"); exit(EXIT_FAILURE); } for (z = 0; (int)z < kl; z++) { key[z] = (unsigned char)z; } if ((err = cipher_descriptor[x].setup(key, kl, 0, &skey)) != CRYPT_OK) { printf("setup error: %s\n", error_to_string(err)); exit(EXIT_FAILURE); } for (z = 0; (int)z < cipher_descriptor[x].block_length; z++) { pt[z] = (unsigned char)z; } for (w = 0; w < 50; w++) { cipher_descriptor[x].ecb_encrypt(pt, pt, &skey); fprintf(out, "%2lu: ", w); for (z = 0; (int)z < cipher_descriptor[x].block_length; z++) { fprintf(out, "%02X", pt[z]); } fprintf(out, "\n"); /* reschedule a new key */ for (z = 0; z < (unsigned long)kl; z++) { key[z] = pt[z % cipher_descriptor[x].block_length]; } if ((err = cipher_descriptor[x].setup(key, kl, 0, &skey)) != CRYPT_OK) { printf("cipher setup2 error: %s\n", error_to_string(err)); exit(EXIT_FAILURE); } } fprintf(out, "\n"); XFREE(key); } fprintf(out, "\n"); } fclose(out); } void hmac_gen(void) { unsigned char key[MAXBLOCKSIZE], output[MAXBLOCKSIZE], *input; int x, y, z, err; FILE *out; unsigned long len; out = fopen("hmac_tv.txt", "w"); fprintf(out, "HMAC Tests. In these tests messages of N bytes long (00,01,02,...,NN-1) are HMACed. The initial key is\n" "of the same format (the same length as the HASH output size). The HMAC key in step N+1 is the HMAC output of\n" "step N.\n\n"); for (x = 0; hash_descriptor[x].name != NULL; x++) { fprintf(out, "HMAC-%s\n", hash_descriptor[x].name); /* initial key */ for (y = 0; y < (int)hash_descriptor[x].hashsize; y++) { key[y] = (y&255); } input = XMALLOC(hash_descriptor[x].blocksize * 2 + 1); if (input == NULL) { perror("Can't malloc memory"); exit(EXIT_FAILURE); } for (y = 0; y <= (int)(hash_descriptor[x].blocksize * 2); y++) { for (z = 0; z < y; z++) { input[z] = (unsigned char)(z & 255); } len = sizeof(output); if ((err = hmac_memory(x, key, hash_descriptor[x].hashsize, input, y, output, &len)) != CRYPT_OK) { printf("Error hmacing: %s\n", error_to_string(err)); exit(EXIT_FAILURE); } fprintf(out, "%3d: ", y); for (z = 0; z <(int) len; z++) { fprintf(out, "%02X", output[z]); } fprintf(out, "\n"); /* forward the key */ memcpy(key, output, hash_descriptor[x].hashsize); } XFREE(input); fprintf(out, "\n"); } fclose(out); } void omac_gen(void) { unsigned char key[MAXBLOCKSIZE], output[MAXBLOCKSIZE], input[MAXBLOCKSIZE*2+2]; int err, x, y, z, kl; FILE *out; unsigned long len; out = fopen("omac_tv.txt", "w"); fprintf(out, "OMAC Tests. In these tests messages of N bytes long (00,01,02,...,NN-1) are OMAC'ed. The initial key is\n" "of the same format (length specified per cipher). The OMAC key in step N+1 is the OMAC output of\n" "step N (repeated as required to fill the array).\n\n"); for (x = 0; cipher_descriptor[x].name != NULL; x++) { kl = cipher_descriptor[x].block_length; /* skip ciphers which do not have 64 or 128 bit block sizes */ if (kl != 8 && kl != 16) continue; if (cipher_descriptor[x].keysize(&kl) != CRYPT_OK) { kl = cipher_descriptor[x].max_key_length; } fprintf(out, "OMAC-%s (%d byte key)\n", cipher_descriptor[x].name, kl); /* initial key/block */ for (y = 0; y < kl; y++) { key[y] = (y & 255); } for (y = 0; y <= (int)(cipher_descriptor[x].block_length*2); y++) { for (z = 0; z < y; z++) { input[z] = (unsigned char)(z & 255); } len = sizeof(output); if ((err = omac_memory(x, key, kl, input, y, output, &len)) != CRYPT_OK) { printf("Error omacing: %s\n", error_to_string(err)); exit(EXIT_FAILURE); } fprintf(out, "%3d: ", y); for (z = 0; z <(int)len; z++) { fprintf(out, "%02X", output[z]); } fprintf(out, "\n"); /* forward the key */ for (z = 0; z < kl; z++) { key[z] = output[z % len]; } } fprintf(out, "\n"); } fclose(out); } void pmac_gen(void) { unsigned char key[MAXBLOCKSIZE], output[MAXBLOCKSIZE], input[MAXBLOCKSIZE*2+2]; int err, x, y, z, kl; FILE *out; unsigned long len; out = fopen("pmac_tv.txt", "w"); fprintf(out, "PMAC Tests. In these tests messages of N bytes long (00,01,02,...,NN-1) are OMAC'ed. The initial key is\n" "of the same format (length specified per cipher). The OMAC key in step N+1 is the OMAC output of\n" "step N (repeated as required to fill the array).\n\n"); for (x = 0; cipher_descriptor[x].name != NULL; x++) { kl = cipher_descriptor[x].block_length; /* skip ciphers which do not have 64 or 128 bit block sizes */ if (kl != 8 && kl != 16) continue; if (cipher_descriptor[x].keysize(&kl) != CRYPT_OK) { kl = cipher_descriptor[x].max_key_length; } fprintf(out, "PMAC-%s (%d byte key)\n", cipher_descriptor[x].name, kl); /* initial key/block */ for (y = 0; y < kl; y++) { key[y] = (y & 255); } for (y = 0; y <= (int)(cipher_descriptor[x].block_length*2); y++) { for (z = 0; z < y; z++) { input[z] = (unsigned char)(z & 255); } len = sizeof(output); if ((err = pmac_memory(x, key, kl, input, y, output, &len)) != CRYPT_OK) { printf("Error omacing: %s\n", error_to_string(err)); exit(EXIT_FAILURE); } fprintf(out, "%3d: ", y); for (z = 0; z <(int)len; z++) { fprintf(out, "%02X", output[z]); } fprintf(out, "\n"); /* forward the key */ for (z = 0; z < kl; z++) { key[z] = output[z % len]; } } fprintf(out, "\n"); } fclose(out); } void eax_gen(void) { int err, kl, x, y1, z; FILE *out; unsigned char key[MAXBLOCKSIZE], nonce[MAXBLOCKSIZE*2], header[MAXBLOCKSIZE*2], plaintext[MAXBLOCKSIZE*2], tag[MAXBLOCKSIZE]; unsigned long len; out = fopen("eax_tv.txt", "w"); fprintf(out, "EAX Test Vectors. Uses the 00010203...NN-1 pattern for header/nonce/plaintext/key. The outputs\n" "are of the form ciphertext,tag for a given NN. The key for step N>1 is the tag of the previous\n" "step repeated sufficiently.\n\n"); for (x = 0; cipher_descriptor[x].name != NULL; x++) { kl = cipher_descriptor[x].block_length; /* skip ciphers which do not have 64 or 128 bit block sizes */ if (kl != 8 && kl != 16) continue; if (cipher_descriptor[x].keysize(&kl) != CRYPT_OK) { kl = cipher_descriptor[x].max_key_length; } fprintf(out, "EAX-%s (%d byte key)\n", cipher_descriptor[x].name, kl); /* the key */ for (z = 0; z < kl; z++) { key[z] = (z & 255); } for (y1 = 0; y1 <= (int)(cipher_descriptor[x].block_length*2); y1++){ for (z = 0; z < y1; z++) { plaintext[z] = (unsigned char)(z & 255); nonce[z] = (unsigned char)(z & 255); header[z] = (unsigned char)(z & 255); } len = sizeof(tag); if ((err = eax_encrypt_authenticate_memory(x, key, kl, nonce, y1, header, y1, plaintext, y1, plaintext, tag, &len)) != CRYPT_OK) { printf("Error EAX'ing: %s\n", error_to_string(err)); exit(EXIT_FAILURE); } fprintf(out, "%3d: ", y1); for (z = 0; z < y1; z++) { fprintf(out, "%02X", plaintext[z]); } fprintf(out, ", "); for (z = 0; z <(int)len; z++) { fprintf(out, "%02X", tag[z]); } fprintf(out, "\n"); /* forward the key */ for (z = 0; z < kl; z++) { key[z] = tag[z % len]; } } fprintf(out, "\n"); } fclose(out); } void ocb_gen(void) { int err, kl, x, y1, z; FILE *out; unsigned char key[MAXBLOCKSIZE], nonce[MAXBLOCKSIZE*2], plaintext[MAXBLOCKSIZE*2], tag[MAXBLOCKSIZE]; unsigned long len; out = fopen("ocb_tv.txt", "w"); fprintf(out, "OCB Test Vectors. Uses the 00010203...NN-1 pattern for nonce/plaintext/key. The outputs\n" "are of the form ciphertext,tag for a given NN. The key for step N>1 is the tag of the previous\n" "step repeated sufficiently. The nonce is fixed throughout.\n\n"); for (x = 0; cipher_descriptor[x].name != NULL; x++) { kl = cipher_descriptor[x].block_length; /* skip ciphers which do not have 64 or 128 bit block sizes */ if (kl != 8 && kl != 16) continue; if (cipher_descriptor[x].keysize(&kl) != CRYPT_OK) { kl = cipher_descriptor[x].max_key_length; } fprintf(out, "OCB-%s (%d byte key)\n", cipher_descriptor[x].name, kl); /* the key */ for (z = 0; z < kl; z++) { key[z] = (z & 255); } /* fixed nonce */ for (z = 0; z < cipher_descriptor[x].block_length; z++) { nonce[z] = z; } for (y1 = 0; y1 <= (int)(cipher_descriptor[x].block_length*2); y1++){ for (z = 0; z < y1; z++) { plaintext[z] = (unsigned char)(z & 255); } len = sizeof(tag); if ((err = ocb_encrypt_authenticate_memory(x, key, kl, nonce, plaintext, y1, plaintext, tag, &len)) != CRYPT_OK) { printf("Error OCB'ing: %s\n", error_to_string(err)); exit(EXIT_FAILURE); } fprintf(out, "%3d: ", y1); for (z = 0; z < y1; z++) { fprintf(out, "%02X", plaintext[z]); } fprintf(out, ", "); for (z = 0; z <(int)len; z++) { fprintf(out, "%02X", tag[z]); } fprintf(out, "\n"); /* forward the key */ for (z = 0; z < kl; z++) { key[z] = tag[z % len]; } } fprintf(out, "\n"); } fclose(out); } void ccm_gen(void) { int err, kl, x, y1, z; FILE *out; unsigned char key[MAXBLOCKSIZE], nonce[MAXBLOCKSIZE*2], plaintext[MAXBLOCKSIZE*2], tag[MAXBLOCKSIZE]; unsigned long len; out = fopen("ccm_tv.txt", "w"); fprintf(out, "CCM Test Vectors. Uses the 00010203...NN-1 pattern for nonce/header/plaintext/key. The outputs\n" "are of the form ciphertext,tag for a given NN. The key for step N>1 is the tag of the previous\n" "step repeated sufficiently. The nonce is fixed throughout at 13 bytes 000102...\n\n"); for (x = 0; cipher_descriptor[x].name != NULL; x++) { kl = cipher_descriptor[x].block_length; /* skip ciphers which do not have 128 bit block sizes */ if (kl != 16) continue; if (cipher_descriptor[x].keysize(&kl) != CRYPT_OK) { kl = cipher_descriptor[x].max_key_length; } fprintf(out, "CCM-%s (%d byte key)\n", cipher_descriptor[x].name, kl); /* the key */ for (z = 0; z < kl; z++) { key[z] = (z & 255); } /* fixed nonce */ for (z = 0; z < cipher_descriptor[x].block_length; z++) { nonce[z] = z; } for (y1 = 0; y1 <= (int)(cipher_descriptor[x].block_length*2); y1++){ for (z = 0; z < y1; z++) { plaintext[z] = (unsigned char)(z & 255); } len = sizeof(tag); if ((err = ccm_memory(x, key, kl, NULL, nonce, 13, plaintext, y1, plaintext, y1, plaintext, tag, &len, CCM_ENCRYPT)) != CRYPT_OK) { printf("Error CCM'ing: %s\n", error_to_string(err)); exit(EXIT_FAILURE); } fprintf(out, "%3d: ", y1); for (z = 0; z < y1; z++) { fprintf(out, "%02X", plaintext[z]); } fprintf(out, ", "); for (z = 0; z <(int)len; z++) { fprintf(out, "%02X", tag[z]); } fprintf(out, "\n"); /* forward the key */ for (z = 0; z < kl; z++) { key[z] = tag[z % len]; } } fprintf(out, "\n"); } fclose(out); } void gcm_gen(void) { int err, kl, x, y1, z; FILE *out; unsigned char key[MAXBLOCKSIZE], plaintext[MAXBLOCKSIZE*2], tag[MAXBLOCKSIZE]; unsigned long len; out = fopen("gcm_tv.txt", "w"); fprintf(out, "GCM Test Vectors. Uses the 00010203...NN-1 pattern for nonce/header/plaintext/key. The outputs\n" "are of the form ciphertext,tag for a given NN. The key for step N>1 is the tag of the previous\n" "step repeated sufficiently. The nonce is fixed throughout at 13 bytes 000102...\n\n"); for (x = 0; cipher_descriptor[x].name != NULL; x++) { kl = cipher_descriptor[x].block_length; /* skip ciphers which do not have 128 bit block sizes */ if (kl != 16) continue; if (cipher_descriptor[x].keysize(&kl) != CRYPT_OK) { kl = cipher_descriptor[x].max_key_length; } fprintf(out, "GCM-%s (%d byte key)\n", cipher_descriptor[x].name, kl); /* the key */ for (z = 0; z < kl; z++) { key[z] = (z & 255); } for (y1 = 0; y1 <= (int)(cipher_descriptor[x].block_length*2); y1++){ for (z = 0; z < y1; z++) { plaintext[z] = (unsigned char)(z & 255); } len = sizeof(tag); if ((err = gcm_memory(x, key, kl, plaintext, y1, plaintext, y1, plaintext, y1, plaintext, tag, &len, GCM_ENCRYPT)) != CRYPT_OK) { printf("Error GCM'ing: %s\n", error_to_string(err)); exit(EXIT_FAILURE); } fprintf(out, "%3d: ", y1); for (z = 0; z < y1; z++) { fprintf(out, "%02X", plaintext[z]); } fprintf(out, ", "); for (z = 0; z <(int)len; z++) { fprintf(out, "%02X", tag[z]); } fprintf(out, "\n"); /* forward the key */ for (z = 0; z < kl; z++) { key[z] = tag[z % len]; } } fprintf(out, "\n"); } fclose(out); } void base64_gen(void) { FILE *out; unsigned char dst[256], src[32]; unsigned long x, y, len; out = fopen("base64_tv.txt", "w"); fprintf(out, "Base64 vectors. These are the base64 encodings of the strings 00,01,02...NN-1\n\n"); for (x = 0; x <= 32; x++) { for (y = 0; y < x; y++) { src[y] = y; } len = sizeof(dst); base64_encode(src, x, dst, &len); fprintf(out, "%2lu: %s\n", x, dst); } fclose(out); } void math_gen(void) { } void ecc_gen(void) { FILE *out; unsigned char str[512]; void *k, *order, *modulus; ecc_point *G, *R; int x; out = fopen("ecc_tv.txt", "w"); fprintf(out, "ecc vectors. These are for kG for k=1,3,9,27,...,3**n until k > order of the curve outputs are <k,x,y> triplets\n\n"); G = ltc_ecc_new_point(); R = ltc_ecc_new_point(); mp_init(&k); mp_init(&order); mp_init(&modulus); for (x = 0; ltc_ecc_sets[x].size != 0; x++) { fprintf(out, "ECC-%d\n", ltc_ecc_sets[x].size*8); mp_set(k, 1); mp_read_radix(order, (char *)ltc_ecc_sets[x].order, 16); mp_read_radix(modulus, (char *)ltc_ecc_sets[x].prime, 16); mp_read_radix(G->x, (char *)ltc_ecc_sets[x].Gx, 16); mp_read_radix(G->y, (char *)ltc_ecc_sets[x].Gy, 16); mp_set(G->z, 1); while (mp_cmp(k, order) == LTC_MP_LT) { ltc_mp.ecc_ptmul(k, G, R, modulus, 1); mp_tohex(k, (char*)str); fprintf(out, "%s, ", (char*)str); mp_tohex(R->x, (char*)str); fprintf(out, "%s, ", (char*)str); mp_tohex(R->y, (char*)str); fprintf(out, "%s\n", (char*)str); mp_mul_d(k, 3, k); } } mp_clear_multi(k, order, modulus, NULL); ltc_ecc_del_point(G); ltc_ecc_del_point(R); fclose(out); } void lrw_gen(void) { FILE *out; unsigned char tweak[16], key[16], iv[16], buf[1024]; int x, y, err; symmetric_LRW lrw; /* initialize default key and tweak */ for (x = 0; x < 16; x++) { tweak[x] = key[x] = iv[x] = x; } out = fopen("lrw_tv.txt", "w"); for (x = 16; x < (int)(sizeof(buf)); x += 16) { if ((err = lrw_start(find_cipher("aes"), iv, key, 16, tweak, 0, &lrw)) != CRYPT_OK) { fprintf(stderr, "Error starting LRW-AES: %s\n", error_to_string(err)); exit(EXIT_FAILURE); } /* encrypt incremental */ for (y = 0; y < x; y++) { buf[y] = y & 255; } if ((err = lrw_encrypt(buf, buf, x, &lrw)) != CRYPT_OK) { fprintf(stderr, "Error encrypting with LRW-AES: %s\n", error_to_string(err)); exit(EXIT_FAILURE); } /* display it */ fprintf(out, "%d:", x); for (y = 0; y < x; y++) { fprintf(out, "%02x", buf[y]); } fprintf(out, "\n"); /* reset IV */ if ((err = lrw_setiv(iv, 16, &lrw)) != CRYPT_OK) { fprintf(stderr, "Error setting IV: %s\n", error_to_string(err)); exit(EXIT_FAILURE); } /* copy new tweak, iv and key */ for (y = 0; y < 16; y++) { key[y] = buf[y]; iv[y] = buf[(y+16)%x]; tweak[y] = buf[(y+32)%x]; } if ((err = lrw_decrypt(buf, buf, x, &lrw)) != CRYPT_OK) { fprintf(stderr, "Error decrypting with LRW-AES: %s\n", error_to_string(err)); exit(EXIT_FAILURE); } /* display it */ fprintf(out, "%d:", x); for (y = 0; y < x; y++) { fprintf(out, "%02x", buf[y]); } fprintf(out, "\n"); lrw_done(&lrw); } fclose(out); } int main(void) { reg_algs(); printf("Generating hash vectors..."); fflush(stdout); hash_gen(); printf("done\n"); printf("Generating cipher vectors..."); fflush(stdout); cipher_gen(); printf("done\n"); printf("Generating HMAC vectors..."); fflush(stdout); hmac_gen(); printf("done\n"); printf("Generating OMAC vectors..."); fflush(stdout); omac_gen(); printf("done\n"); printf("Generating PMAC vectors..."); fflush(stdout); pmac_gen(); printf("done\n"); printf("Generating EAX vectors..."); fflush(stdout); eax_gen(); printf("done\n"); printf("Generating OCB vectors..."); fflush(stdout); ocb_gen(); printf("done\n"); printf("Generating CCM vectors..."); fflush(stdout); ccm_gen(); printf("done\n"); printf("Generating GCM vectors..."); fflush(stdout); gcm_gen(); printf("done\n"); printf("Generating BASE64 vectors..."); fflush(stdout); base64_gen(); printf("done\n"); printf("Generating MATH vectors..."); fflush(stdout); math_gen(); printf("done\n"); printf("Generating ECC vectors..."); fflush(stdout); ecc_gen(); printf("done\n"); printf("Generating LRW vectors..."); fflush(stdout); lrw_gen(); printf("done\n"); return 0; } /* $Source: /cvs/libtom/libtomcrypt/demos/tv_gen.c,v $ */ /* $Revision: 1.15 $ */ /* $Date: 2006/06/09 22:10:27 $ */