Mercurial > dropbear
view libtommath/bn_mp_log_u32.c @ 1788:1fc0012b9c38
Fix handling of replies to global requests (#112)
The current code assumes that all global requests want / need a reply.
This isn't always true and the request itself indicates if it wants a
reply or not.
It causes a specific problem with [email protected] messages.
These are sent by OpenSSH after authentication to inform the client of
potential other host keys for the host. This can be used to add a new
type of host key or to rotate host keys.
The initial information message from the server is sent as a global
request, but with want_reply set to false. This means that the server
doesn't expect an answer to this message. Instead the client needs to
send a prove request as a reply if it wants to receive proof of
ownership for the host keys.
The bug doesn't cause any current problems with due to how OpenSSH
treats receiving the failure message. It instead treats it as a
keepalive message and further ignores it.
Arguably this is a protocol violation though of Dropbear and it is only
accidental that it doesn't cause a problem with OpenSSH.
The bug was found when adding host keys support to libssh, which is more
strict protocol wise and treats the unexpected failure message an error,
also see https://gitlab.com/libssh/libssh-mirror/-/merge_requests/145
for more information.
The fix here is to honor the want_reply flag in the global request and
to only send a reply if the other side expects a reply.
author | Dirkjan Bussink <d.bussink@gmail.com> |
---|---|
date | Thu, 10 Dec 2020 16:13:13 +0100 |
parents | 1051e4eea25a |
children |
line wrap: on
line source
#include "tommath_private.h" #ifdef BN_MP_LOG_U32_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* Compute log_{base}(a) */ static mp_word s_pow(mp_word base, mp_word exponent) { mp_word result = 1uLL; while (exponent != 0u) { if ((exponent & 1u) == 1u) { result *= base; } exponent >>= 1; base *= base; } return result; } static mp_digit s_digit_ilogb(mp_digit base, mp_digit n) { mp_word bracket_low = 1uLL, bracket_mid, bracket_high, N; mp_digit ret, high = 1uL, low = 0uL, mid; if (n < base) { return 0uL; } if (n == base) { return 1uL; } bracket_high = (mp_word) base ; N = (mp_word) n; while (bracket_high < N) { low = high; bracket_low = bracket_high; high <<= 1; bracket_high *= bracket_high; } while (((mp_digit)(high - low)) > 1uL) { mid = (low + high) >> 1; bracket_mid = bracket_low * s_pow(base, (mp_word)(mid - low)); if (N < bracket_mid) { high = mid ; bracket_high = bracket_mid ; } if (N > bracket_mid) { low = mid ; bracket_low = bracket_mid ; } if (N == bracket_mid) { return (mp_digit) mid; } } if (bracket_high == N) { ret = high; } else { ret = low; } return ret; } /* TODO: output could be "int" because the output of mp_radix_size is int, too, as is the output of mp_bitcount. With the same problem: max size is INT_MAX * MP_DIGIT not INT_MAX only! */ mp_err mp_log_u32(const mp_int *a, uint32_t base, uint32_t *c) { mp_err err; mp_ord cmp; uint32_t high, low, mid; mp_int bracket_low, bracket_high, bracket_mid, t, bi_base; err = MP_OKAY; if (a->sign == MP_NEG) { return MP_VAL; } if (MP_IS_ZERO(a)) { return MP_VAL; } if (base < 2u) { return MP_VAL; } /* A small shortcut for bases that are powers of two. */ if ((base & (base - 1u)) == 0u) { int y, bit_count; for (y=0; (y < 7) && ((base & 1u) == 0u); y++) { base >>= 1; } bit_count = mp_count_bits(a) - 1; *c = (uint32_t)(bit_count/y); return MP_OKAY; } if (a->used == 1) { *c = (uint32_t)s_digit_ilogb(base, a->dp[0]); return err; } cmp = mp_cmp_d(a, base); if ((cmp == MP_LT) || (cmp == MP_EQ)) { *c = cmp == MP_EQ; return err; } if ((err = mp_init_multi(&bracket_low, &bracket_high, &bracket_mid, &t, &bi_base, NULL)) != MP_OKAY) { return err; } low = 0u; mp_set(&bracket_low, 1uL); high = 1u; mp_set(&bracket_high, base); /* A kind of Giant-step/baby-step algorithm. Idea shamelessly stolen from https://programmingpraxis.com/2010/05/07/integer-logarithms/2/ The effect is asymptotic, hence needs benchmarks to test if the Giant-step should be skipped for small n. */ while (mp_cmp(&bracket_high, a) == MP_LT) { low = high; if ((err = mp_copy(&bracket_high, &bracket_low)) != MP_OKAY) { goto LBL_ERR; } high <<= 1; if ((err = mp_sqr(&bracket_high, &bracket_high)) != MP_OKAY) { goto LBL_ERR; } } mp_set(&bi_base, base); while ((high - low) > 1u) { mid = (high + low) >> 1; if ((err = mp_expt_u32(&bi_base, (uint32_t)(mid - low), &t)) != MP_OKAY) { goto LBL_ERR; } if ((err = mp_mul(&bracket_low, &t, &bracket_mid)) != MP_OKAY) { goto LBL_ERR; } cmp = mp_cmp(a, &bracket_mid); if (cmp == MP_LT) { high = mid; mp_exch(&bracket_mid, &bracket_high); } if (cmp == MP_GT) { low = mid; mp_exch(&bracket_mid, &bracket_low); } if (cmp == MP_EQ) { *c = mid; goto LBL_END; } } *c = (mp_cmp(&bracket_high, a) == MP_EQ) ? high : low; LBL_END: LBL_ERR: mp_clear_multi(&bracket_low, &bracket_high, &bracket_mid, &t, &bi_base, NULL); return err; } #endif