view libtommath/bn_mp_montgomery_reduce.c @ 1788:1fc0012b9c38

Fix handling of replies to global requests (#112) The current code assumes that all global requests want / need a reply. This isn't always true and the request itself indicates if it wants a reply or not. It causes a specific problem with [email protected] messages. These are sent by OpenSSH after authentication to inform the client of potential other host keys for the host. This can be used to add a new type of host key or to rotate host keys. The initial information message from the server is sent as a global request, but with want_reply set to false. This means that the server doesn't expect an answer to this message. Instead the client needs to send a prove request as a reply if it wants to receive proof of ownership for the host keys. The bug doesn't cause any current problems with due to how OpenSSH treats receiving the failure message. It instead treats it as a keepalive message and further ignores it. Arguably this is a protocol violation though of Dropbear and it is only accidental that it doesn't cause a problem with OpenSSH. The bug was found when adding host keys support to libssh, which is more strict protocol wise and treats the unexpected failure message an error, also see https://gitlab.com/libssh/libssh-mirror/-/merge_requests/145 for more information. The fix here is to honor the want_reply flag in the global request and to only send a reply if the other side expects a reply.
author Dirkjan Bussink <d.bussink@gmail.com>
date Thu, 10 Dec 2020 16:13:13 +0100
parents 1051e4eea25a
children
line wrap: on
line source

#include "tommath_private.h"
#ifdef BN_MP_MONTGOMERY_REDUCE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */

/* computes xR**-1 == x (mod N) via Montgomery Reduction */
mp_err mp_montgomery_reduce(mp_int *x, const mp_int *n, mp_digit rho)
{
   int      ix, digs;
   mp_err   err;
   mp_digit mu;

   /* can the fast reduction [comba] method be used?
    *
    * Note that unlike in mul you're safely allowed *less*
    * than the available columns [255 per default] since carries
    * are fixed up in the inner loop.
    */
   digs = (n->used * 2) + 1;
   if ((digs < MP_WARRAY) &&
       (x->used <= MP_WARRAY) &&
       (n->used < MP_MAXFAST)) {
      return s_mp_montgomery_reduce_fast(x, n, rho);
   }

   /* grow the input as required */
   if (x->alloc < digs) {
      if ((err = mp_grow(x, digs)) != MP_OKAY) {
         return err;
      }
   }
   x->used = digs;

   for (ix = 0; ix < n->used; ix++) {
      /* mu = ai * rho mod b
       *
       * The value of rho must be precalculated via
       * montgomery_setup() such that
       * it equals -1/n0 mod b this allows the
       * following inner loop to reduce the
       * input one digit at a time
       */
      mu = (mp_digit)(((mp_word)x->dp[ix] * (mp_word)rho) & MP_MASK);

      /* a = a + mu * m * b**i */
      {
         int iy;
         mp_digit *tmpn, *tmpx, u;
         mp_word r;

         /* alias for digits of the modulus */
         tmpn = n->dp;

         /* alias for the digits of x [the input] */
         tmpx = x->dp + ix;

         /* set the carry to zero */
         u = 0;

         /* Multiply and add in place */
         for (iy = 0; iy < n->used; iy++) {
            /* compute product and sum */
            r       = ((mp_word)mu * (mp_word)*tmpn++) +
                      (mp_word)u + (mp_word)*tmpx;

            /* get carry */
            u       = (mp_digit)(r >> (mp_word)MP_DIGIT_BIT);

            /* fix digit */
            *tmpx++ = (mp_digit)(r & (mp_word)MP_MASK);
         }
         /* At this point the ix'th digit of x should be zero */


         /* propagate carries upwards as required*/
         while (u != 0u) {
            *tmpx   += u;
            u        = *tmpx >> MP_DIGIT_BIT;
            *tmpx++ &= MP_MASK;
         }
      }
   }

   /* at this point the n.used'th least
    * significant digits of x are all zero
    * which means we can shift x to the
    * right by n.used digits and the
    * residue is unchanged.
    */

   /* x = x/b**n.used */
   mp_clamp(x);
   mp_rshd(x, n->used);

   /* if x >= n then x = x - n */
   if (mp_cmp_mag(x, n) != MP_LT) {
      return s_mp_sub(x, n, x);
   }

   return MP_OKAY;
}
#endif