view libtommath/bn_s_mp_exptmod.c @ 1788:1fc0012b9c38

Fix handling of replies to global requests (#112) The current code assumes that all global requests want / need a reply. This isn't always true and the request itself indicates if it wants a reply or not. It causes a specific problem with [email protected] messages. These are sent by OpenSSH after authentication to inform the client of potential other host keys for the host. This can be used to add a new type of host key or to rotate host keys. The initial information message from the server is sent as a global request, but with want_reply set to false. This means that the server doesn't expect an answer to this message. Instead the client needs to send a prove request as a reply if it wants to receive proof of ownership for the host keys. The bug doesn't cause any current problems with due to how OpenSSH treats receiving the failure message. It instead treats it as a keepalive message and further ignores it. Arguably this is a protocol violation though of Dropbear and it is only accidental that it doesn't cause a problem with OpenSSH. The bug was found when adding host keys support to libssh, which is more strict protocol wise and treats the unexpected failure message an error, also see https://gitlab.com/libssh/libssh-mirror/-/merge_requests/145 for more information. The fix here is to honor the want_reply flag in the global request and to only send a reply if the other side expects a reply.
author Dirkjan Bussink <d.bussink@gmail.com>
date Thu, 10 Dec 2020 16:13:13 +0100
parents 1051e4eea25a
children
line wrap: on
line source

#include "tommath_private.h"
#ifdef BN_S_MP_EXPTMOD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */

#ifdef MP_LOW_MEM
#   define TAB_SIZE 32
#   define MAX_WINSIZE 5
#else
#   define TAB_SIZE 256
#   define MAX_WINSIZE 0
#endif

mp_err s_mp_exptmod(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y, int redmode)
{
   mp_int  M[TAB_SIZE], res, mu;
   mp_digit buf;
   mp_err   err;
   int      bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
   mp_err(*redux)(mp_int *x, const mp_int *m, const mp_int *mu);

   /* find window size */
   x = mp_count_bits(X);
   if (x <= 7) {
      winsize = 2;
   } else if (x <= 36) {
      winsize = 3;
   } else if (x <= 140) {
      winsize = 4;
   } else if (x <= 450) {
      winsize = 5;
   } else if (x <= 1303) {
      winsize = 6;
   } else if (x <= 3529) {
      winsize = 7;
   } else {
      winsize = 8;
   }

   winsize = MAX_WINSIZE ? MP_MIN(MAX_WINSIZE, winsize) : winsize;

   /* init M array */
   /* init first cell */
   if ((err = mp_init(&M[1])) != MP_OKAY) {
      return err;
   }

   /* now init the second half of the array */
   for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
      if ((err = mp_init(&M[x])) != MP_OKAY) {
         for (y = 1<<(winsize-1); y < x; y++) {
            mp_clear(&M[y]);
         }
         mp_clear(&M[1]);
         return err;
      }
   }

   /* create mu, used for Barrett reduction */
   if ((err = mp_init(&mu)) != MP_OKAY)                           goto LBL_M;

   if (redmode == 0) {
      if ((err = mp_reduce_setup(&mu, P)) != MP_OKAY)             goto LBL_MU;
      redux = mp_reduce;
   } else {
      if ((err = mp_reduce_2k_setup_l(P, &mu)) != MP_OKAY)        goto LBL_MU;
      redux = mp_reduce_2k_l;
   }

   /* create M table
    *
    * The M table contains powers of the base,
    * e.g. M[x] = G**x mod P
    *
    * The first half of the table is not
    * computed though accept for M[0] and M[1]
    */
   if ((err = mp_mod(G, P, &M[1])) != MP_OKAY)                    goto LBL_MU;

   /* compute the value at M[1<<(winsize-1)] by squaring
    * M[1] (winsize-1) times
    */
   if ((err = mp_copy(&M[1], &M[(size_t)1 << (winsize - 1)])) != MP_OKAY) goto LBL_MU;

   for (x = 0; x < (winsize - 1); x++) {
      /* square it */
      if ((err = mp_sqr(&M[(size_t)1 << (winsize - 1)],
                        &M[(size_t)1 << (winsize - 1)])) != MP_OKAY) goto LBL_MU;

      /* reduce modulo P */
      if ((err = redux(&M[(size_t)1 << (winsize - 1)], P, &mu)) != MP_OKAY) goto LBL_MU;
   }

   /* create upper table, that is M[x] = M[x-1] * M[1] (mod P)
    * for x = (2**(winsize - 1) + 1) to (2**winsize - 1)
    */
   for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
      if ((err = mp_mul(&M[x - 1], &M[1], &M[x])) != MP_OKAY)     goto LBL_MU;
      if ((err = redux(&M[x], P, &mu)) != MP_OKAY)                goto LBL_MU;
   }

   /* setup result */
   if ((err = mp_init(&res)) != MP_OKAY)                          goto LBL_MU;
   mp_set(&res, 1uL);

   /* set initial mode and bit cnt */
   mode   = 0;
   bitcnt = 1;
   buf    = 0;
   digidx = X->used - 1;
   bitcpy = 0;
   bitbuf = 0;

   for (;;) {
      /* grab next digit as required */
      if (--bitcnt == 0) {
         /* if digidx == -1 we are out of digits */
         if (digidx == -1) {
            break;
         }
         /* read next digit and reset the bitcnt */
         buf    = X->dp[digidx--];
         bitcnt = (int)MP_DIGIT_BIT;
      }

      /* grab the next msb from the exponent */
      y     = (buf >> (mp_digit)(MP_DIGIT_BIT - 1)) & 1uL;
      buf <<= (mp_digit)1;

      /* if the bit is zero and mode == 0 then we ignore it
       * These represent the leading zero bits before the first 1 bit
       * in the exponent.  Technically this opt is not required but it
       * does lower the # of trivial squaring/reductions used
       */
      if ((mode == 0) && (y == 0)) {
         continue;
      }

      /* if the bit is zero and mode == 1 then we square */
      if ((mode == 1) && (y == 0)) {
         if ((err = mp_sqr(&res, &res)) != MP_OKAY)               goto LBL_RES;
         if ((err = redux(&res, P, &mu)) != MP_OKAY)              goto LBL_RES;
         continue;
      }

      /* else we add it to the window */
      bitbuf |= (y << (winsize - ++bitcpy));
      mode    = 2;

      if (bitcpy == winsize) {
         /* ok window is filled so square as required and multiply  */
         /* square first */
         for (x = 0; x < winsize; x++) {
            if ((err = mp_sqr(&res, &res)) != MP_OKAY)            goto LBL_RES;
            if ((err = redux(&res, P, &mu)) != MP_OKAY)           goto LBL_RES;
         }

         /* then multiply */
         if ((err = mp_mul(&res, &M[bitbuf], &res)) != MP_OKAY)  goto LBL_RES;
         if ((err = redux(&res, P, &mu)) != MP_OKAY)             goto LBL_RES;

         /* empty window and reset */
         bitcpy = 0;
         bitbuf = 0;
         mode   = 1;
      }
   }

   /* if bits remain then square/multiply */
   if ((mode == 2) && (bitcpy > 0)) {
      /* square then multiply if the bit is set */
      for (x = 0; x < bitcpy; x++) {
         if ((err = mp_sqr(&res, &res)) != MP_OKAY)               goto LBL_RES;
         if ((err = redux(&res, P, &mu)) != MP_OKAY)              goto LBL_RES;

         bitbuf <<= 1;
         if ((bitbuf & (1 << winsize)) != 0) {
            /* then multiply */
            if ((err = mp_mul(&res, &M[1], &res)) != MP_OKAY)     goto LBL_RES;
            if ((err = redux(&res, P, &mu)) != MP_OKAY)           goto LBL_RES;
         }
      }
   }

   mp_exch(&res, Y);
   err = MP_OKAY;
LBL_RES:
   mp_clear(&res);
LBL_MU:
   mp_clear(&mu);
LBL_M:
   mp_clear(&M[1]);
   for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
      mp_clear(&M[x]);
   }
   return err;
}
#endif