Mercurial > dropbear
view libtommath/bn_s_mp_exptmod_fast.c @ 1788:1fc0012b9c38
Fix handling of replies to global requests (#112)
The current code assumes that all global requests want / need a reply.
This isn't always true and the request itself indicates if it wants a
reply or not.
It causes a specific problem with [email protected] messages.
These are sent by OpenSSH after authentication to inform the client of
potential other host keys for the host. This can be used to add a new
type of host key or to rotate host keys.
The initial information message from the server is sent as a global
request, but with want_reply set to false. This means that the server
doesn't expect an answer to this message. Instead the client needs to
send a prove request as a reply if it wants to receive proof of
ownership for the host keys.
The bug doesn't cause any current problems with due to how OpenSSH
treats receiving the failure message. It instead treats it as a
keepalive message and further ignores it.
Arguably this is a protocol violation though of Dropbear and it is only
accidental that it doesn't cause a problem with OpenSSH.
The bug was found when adding host keys support to libssh, which is more
strict protocol wise and treats the unexpected failure message an error,
also see https://gitlab.com/libssh/libssh-mirror/-/merge_requests/145
for more information.
The fix here is to honor the want_reply flag in the global request and
to only send a reply if the other side expects a reply.
author | Dirkjan Bussink <d.bussink@gmail.com> |
---|---|
date | Thu, 10 Dec 2020 16:13:13 +0100 |
parents | 1051e4eea25a |
children |
line wrap: on
line source
#include "tommath_private.h" #ifdef BN_S_MP_EXPTMOD_FAST_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* computes Y == G**X mod P, HAC pp.616, Algorithm 14.85 * * Uses a left-to-right k-ary sliding window to compute the modular exponentiation. * The value of k changes based on the size of the exponent. * * Uses Montgomery or Diminished Radix reduction [whichever appropriate] */ #ifdef MP_LOW_MEM # define TAB_SIZE 32 # define MAX_WINSIZE 5 #else # define TAB_SIZE 256 # define MAX_WINSIZE 0 #endif mp_err s_mp_exptmod_fast(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y, int redmode) { mp_int M[TAB_SIZE], res; mp_digit buf, mp; int bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize; mp_err err; /* use a pointer to the reduction algorithm. This allows us to use * one of many reduction algorithms without modding the guts of * the code with if statements everywhere. */ mp_err(*redux)(mp_int *x, const mp_int *n, mp_digit rho); /* find window size */ x = mp_count_bits(X); if (x <= 7) { winsize = 2; } else if (x <= 36) { winsize = 3; } else if (x <= 140) { winsize = 4; } else if (x <= 450) { winsize = 5; } else if (x <= 1303) { winsize = 6; } else if (x <= 3529) { winsize = 7; } else { winsize = 8; } winsize = MAX_WINSIZE ? MP_MIN(MAX_WINSIZE, winsize) : winsize; /* init M array */ /* init first cell */ if ((err = mp_init_size(&M[1], P->alloc)) != MP_OKAY) { return err; } /* now init the second half of the array */ for (x = 1<<(winsize-1); x < (1 << winsize); x++) { if ((err = mp_init_size(&M[x], P->alloc)) != MP_OKAY) { for (y = 1<<(winsize-1); y < x; y++) { mp_clear(&M[y]); } mp_clear(&M[1]); return err; } } /* determine and setup reduction code */ if (redmode == 0) { if (MP_HAS(MP_MONTGOMERY_SETUP)) { /* now setup montgomery */ if ((err = mp_montgomery_setup(P, &mp)) != MP_OKAY) goto LBL_M; } else { err = MP_VAL; goto LBL_M; } /* automatically pick the comba one if available (saves quite a few calls/ifs) */ if (MP_HAS(S_MP_MONTGOMERY_REDUCE_FAST) && (((P->used * 2) + 1) < MP_WARRAY) && (P->used < MP_MAXFAST)) { redux = s_mp_montgomery_reduce_fast; } else if (MP_HAS(MP_MONTGOMERY_REDUCE)) { /* use slower baseline Montgomery method */ redux = mp_montgomery_reduce; } else { err = MP_VAL; goto LBL_M; } } else if (redmode == 1) { if (MP_HAS(MP_DR_SETUP) && MP_HAS(MP_DR_REDUCE)) { /* setup DR reduction for moduli of the form B**k - b */ mp_dr_setup(P, &mp); redux = mp_dr_reduce; } else { err = MP_VAL; goto LBL_M; } } else if (MP_HAS(MP_REDUCE_2K_SETUP) && MP_HAS(MP_REDUCE_2K)) { /* setup DR reduction for moduli of the form 2**k - b */ if ((err = mp_reduce_2k_setup(P, &mp)) != MP_OKAY) goto LBL_M; redux = mp_reduce_2k; } else { err = MP_VAL; goto LBL_M; } /* setup result */ if ((err = mp_init_size(&res, P->alloc)) != MP_OKAY) goto LBL_M; /* create M table * * * The first half of the table is not computed though accept for M[0] and M[1] */ if (redmode == 0) { if (MP_HAS(MP_MONTGOMERY_CALC_NORMALIZATION)) { /* now we need R mod m */ if ((err = mp_montgomery_calc_normalization(&res, P)) != MP_OKAY) goto LBL_RES; /* now set M[1] to G * R mod m */ if ((err = mp_mulmod(G, &res, P, &M[1])) != MP_OKAY) goto LBL_RES; } else { err = MP_VAL; goto LBL_RES; } } else { mp_set(&res, 1uL); if ((err = mp_mod(G, P, &M[1])) != MP_OKAY) goto LBL_RES; } /* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times */ if ((err = mp_copy(&M[1], &M[(size_t)1 << (winsize - 1)])) != MP_OKAY) goto LBL_RES; for (x = 0; x < (winsize - 1); x++) { if ((err = mp_sqr(&M[(size_t)1 << (winsize - 1)], &M[(size_t)1 << (winsize - 1)])) != MP_OKAY) goto LBL_RES; if ((err = redux(&M[(size_t)1 << (winsize - 1)], P, mp)) != MP_OKAY) goto LBL_RES; } /* create upper table */ for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) { if ((err = mp_mul(&M[x - 1], &M[1], &M[x])) != MP_OKAY) goto LBL_RES; if ((err = redux(&M[x], P, mp)) != MP_OKAY) goto LBL_RES; } /* set initial mode and bit cnt */ mode = 0; bitcnt = 1; buf = 0; digidx = X->used - 1; bitcpy = 0; bitbuf = 0; for (;;) { /* grab next digit as required */ if (--bitcnt == 0) { /* if digidx == -1 we are out of digits so break */ if (digidx == -1) { break; } /* read next digit and reset bitcnt */ buf = X->dp[digidx--]; bitcnt = (int)MP_DIGIT_BIT; } /* grab the next msb from the exponent */ y = (mp_digit)(buf >> (MP_DIGIT_BIT - 1)) & 1uL; buf <<= (mp_digit)1; /* if the bit is zero and mode == 0 then we ignore it * These represent the leading zero bits before the first 1 bit * in the exponent. Technically this opt is not required but it * does lower the # of trivial squaring/reductions used */ if ((mode == 0) && (y == 0)) { continue; } /* if the bit is zero and mode == 1 then we square */ if ((mode == 1) && (y == 0)) { if ((err = mp_sqr(&res, &res)) != MP_OKAY) goto LBL_RES; if ((err = redux(&res, P, mp)) != MP_OKAY) goto LBL_RES; continue; } /* else we add it to the window */ bitbuf |= (y << (winsize - ++bitcpy)); mode = 2; if (bitcpy == winsize) { /* ok window is filled so square as required and multiply */ /* square first */ for (x = 0; x < winsize; x++) { if ((err = mp_sqr(&res, &res)) != MP_OKAY) goto LBL_RES; if ((err = redux(&res, P, mp)) != MP_OKAY) goto LBL_RES; } /* then multiply */ if ((err = mp_mul(&res, &M[bitbuf], &res)) != MP_OKAY) goto LBL_RES; if ((err = redux(&res, P, mp)) != MP_OKAY) goto LBL_RES; /* empty window and reset */ bitcpy = 0; bitbuf = 0; mode = 1; } } /* if bits remain then square/multiply */ if ((mode == 2) && (bitcpy > 0)) { /* square then multiply if the bit is set */ for (x = 0; x < bitcpy; x++) { if ((err = mp_sqr(&res, &res)) != MP_OKAY) goto LBL_RES; if ((err = redux(&res, P, mp)) != MP_OKAY) goto LBL_RES; /* get next bit of the window */ bitbuf <<= 1; if ((bitbuf & (1 << winsize)) != 0) { /* then multiply */ if ((err = mp_mul(&res, &M[1], &res)) != MP_OKAY) goto LBL_RES; if ((err = redux(&res, P, mp)) != MP_OKAY) goto LBL_RES; } } } if (redmode == 0) { /* fixup result if Montgomery reduction is used * recall that any value in a Montgomery system is * actually multiplied by R mod n. So we have * to reduce one more time to cancel out the factor * of R. */ if ((err = redux(&res, P, mp)) != MP_OKAY) goto LBL_RES; } /* swap res with Y */ mp_exch(&res, Y); err = MP_OKAY; LBL_RES: mp_clear(&res); LBL_M: mp_clear(&M[1]); for (x = 1<<(winsize-1); x < (1 << winsize); x++) { mp_clear(&M[x]); } return err; } #endif