Mercurial > dropbear
view libtommath/bn_s_mp_karatsuba_sqr.c @ 1788:1fc0012b9c38
Fix handling of replies to global requests (#112)
The current code assumes that all global requests want / need a reply.
This isn't always true and the request itself indicates if it wants a
reply or not.
It causes a specific problem with [email protected] messages.
These are sent by OpenSSH after authentication to inform the client of
potential other host keys for the host. This can be used to add a new
type of host key or to rotate host keys.
The initial information message from the server is sent as a global
request, but with want_reply set to false. This means that the server
doesn't expect an answer to this message. Instead the client needs to
send a prove request as a reply if it wants to receive proof of
ownership for the host keys.
The bug doesn't cause any current problems with due to how OpenSSH
treats receiving the failure message. It instead treats it as a
keepalive message and further ignores it.
Arguably this is a protocol violation though of Dropbear and it is only
accidental that it doesn't cause a problem with OpenSSH.
The bug was found when adding host keys support to libssh, which is more
strict protocol wise and treats the unexpected failure message an error,
also see https://gitlab.com/libssh/libssh-mirror/-/merge_requests/145
for more information.
The fix here is to honor the want_reply flag in the global request and
to only send a reply if the other side expects a reply.
author | Dirkjan Bussink <d.bussink@gmail.com> |
---|---|
date | Thu, 10 Dec 2020 16:13:13 +0100 |
parents | 1051e4eea25a |
children |
line wrap: on
line source
#include "tommath_private.h" #ifdef BN_S_MP_KARATSUBA_SQR_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* Karatsuba squaring, computes b = a*a using three * half size squarings * * See comments of karatsuba_mul for details. It * is essentially the same algorithm but merely * tuned to perform recursive squarings. */ mp_err s_mp_karatsuba_sqr(const mp_int *a, mp_int *b) { mp_int x0, x1, t1, t2, x0x0, x1x1; int B; mp_err err = MP_MEM; /* min # of digits */ B = a->used; /* now divide in two */ B = B >> 1; /* init copy all the temps */ if (mp_init_size(&x0, B) != MP_OKAY) goto LBL_ERR; if (mp_init_size(&x1, a->used - B) != MP_OKAY) goto X0; /* init temps */ if (mp_init_size(&t1, a->used * 2) != MP_OKAY) goto X1; if (mp_init_size(&t2, a->used * 2) != MP_OKAY) goto T1; if (mp_init_size(&x0x0, B * 2) != MP_OKAY) goto T2; if (mp_init_size(&x1x1, (a->used - B) * 2) != MP_OKAY) goto X0X0; { int x; mp_digit *dst, *src; src = a->dp; /* now shift the digits */ dst = x0.dp; for (x = 0; x < B; x++) { *dst++ = *src++; } dst = x1.dp; for (x = B; x < a->used; x++) { *dst++ = *src++; } } x0.used = B; x1.used = a->used - B; mp_clamp(&x0); /* now calc the products x0*x0 and x1*x1 */ if (mp_sqr(&x0, &x0x0) != MP_OKAY) goto X1X1; /* x0x0 = x0*x0 */ if (mp_sqr(&x1, &x1x1) != MP_OKAY) goto X1X1; /* x1x1 = x1*x1 */ /* now calc (x1+x0)**2 */ if (s_mp_add(&x1, &x0, &t1) != MP_OKAY) goto X1X1; /* t1 = x1 - x0 */ if (mp_sqr(&t1, &t1) != MP_OKAY) goto X1X1; /* t1 = (x1 - x0) * (x1 - x0) */ /* add x0y0 */ if (s_mp_add(&x0x0, &x1x1, &t2) != MP_OKAY) goto X1X1; /* t2 = x0x0 + x1x1 */ if (s_mp_sub(&t1, &t2, &t1) != MP_OKAY) goto X1X1; /* t1 = (x1+x0)**2 - (x0x0 + x1x1) */ /* shift by B */ if (mp_lshd(&t1, B) != MP_OKAY) goto X1X1; /* t1 = (x0x0 + x1x1 - (x1-x0)*(x1-x0))<<B */ if (mp_lshd(&x1x1, B * 2) != MP_OKAY) goto X1X1; /* x1x1 = x1x1 << 2*B */ if (mp_add(&x0x0, &t1, &t1) != MP_OKAY) goto X1X1; /* t1 = x0x0 + t1 */ if (mp_add(&t1, &x1x1, b) != MP_OKAY) goto X1X1; /* t1 = x0x0 + t1 + x1x1 */ err = MP_OKAY; X1X1: mp_clear(&x1x1); X0X0: mp_clear(&x0x0); T2: mp_clear(&t2); T1: mp_clear(&t1); X1: mp_clear(&x1); X0: mp_clear(&x0); LBL_ERR: return err; } #endif