view libtomcrypt/demos/tv_gen.c @ 1629:258b57b208ae

Fix for issue successfull login of disabled user (#78) This commit introduces fix for scenario: 1. Root login disabled on dropbear 2. PAM authentication model enabled While login as root user, after prompt for password user is being notified about login failrue, but after second attempt of prompt for password within same session, login becames succesfull. Signed-off-by: Pawel Rapkiewicz <[email protected]>
author vincentto13 <33652988+vincentto13@users.noreply.github.com>
date Wed, 20 Mar 2019 15:03:40 +0100
parents 6dba84798cd5
children e9dba7abd939
line wrap: on
line source

/* LibTomCrypt, modular cryptographic library -- Tom St Denis
 *
 * LibTomCrypt is a library that provides various cryptographic
 * algorithms in a highly modular and flexible manner.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 */
#include <tomcrypt.h>

void hash_gen(void)
{
   unsigned char md[MAXBLOCKSIZE], *buf;
   unsigned long outlen, x, y, z;
   FILE *out;
   int   err;

   out = fopen("hash_tv.txt", "w");
   if (out == NULL) {
      perror("can't open hash_tv");
   }

   fprintf(out, "Hash Test Vectors:\n\nThese are the hashes of nn bytes '00 01 02 03 .. (nn-1)'\n\n");
   for (x = 0; hash_descriptor[x].name != NULL; x++) {
      buf = XMALLOC(2 * hash_descriptor[x].blocksize + 1);
      if (buf == NULL) {
         perror("can't alloc mem");
         exit(EXIT_FAILURE);
      }
      fprintf(out, "Hash: %s\n", hash_descriptor[x].name);
      for (y = 0; y <= (hash_descriptor[x].blocksize * 2); y++) {
         for (z = 0; z < y; z++) {
            buf[z] = (unsigned char)(z & 255);
         }
         outlen = sizeof(md);
         if ((err = hash_memory(x, buf, y, md, &outlen)) != CRYPT_OK) {
            printf("hash_memory error: %s\n", error_to_string(err));
            exit(EXIT_FAILURE);
         }
         fprintf(out, "%3lu: ", y);
         for (z = 0; z < outlen; z++) {
            fprintf(out, "%02X", md[z]);
         }
         fprintf(out, "\n");
      }
      fprintf(out, "\n");
      XFREE(buf);
   }
   fclose(out);
}

void cipher_gen(void)
{
   unsigned char *key, pt[MAXBLOCKSIZE];
   unsigned long x, y, z, w;
   int err, kl, lastkl;
   FILE *out;
   symmetric_key skey;

   out = fopen("cipher_tv.txt", "w");

   fprintf(out,
"Cipher Test Vectors\n\nThese are test encryptions with key of nn bytes '00 01 02 03 .. (nn-1)' and original PT of the same style.\n"
"The output of step N is used as the key and plaintext for step N+1 (key bytes repeated as required to fill the key)\n\n");

   for (x = 0; cipher_descriptor[x].name != NULL; x++) {
      fprintf(out, "Cipher: %s\n", cipher_descriptor[x].name);

      /* three modes, smallest, medium, large keys */
      lastkl = 10000;
      for (y = 0; y < 3; y++) {
         switch (y) {
            case 0: kl = cipher_descriptor[x].min_key_length; break;
            case 1: kl = (cipher_descriptor[x].min_key_length + cipher_descriptor[x].max_key_length)/2; break;
            case 2: kl = cipher_descriptor[x].max_key_length; break;
         }
         if ((err = cipher_descriptor[x].keysize(&kl)) != CRYPT_OK) {
            printf("keysize error: %s\n", error_to_string(err));
            exit(EXIT_FAILURE);
         }
         if (kl == lastkl) break;
         lastkl = kl;
         fprintf(out, "Key Size: %d bytes\n", kl);

         key = XMALLOC(kl);
         if (key == NULL) {
            perror("can't malloc memory");
            exit(EXIT_FAILURE);
         }

         for (z = 0; (int)z < kl; z++) {
             key[z] = (unsigned char)z;
         }
         if ((err = cipher_descriptor[x].setup(key, kl, 0, &skey)) != CRYPT_OK) {
            printf("setup error: %s\n", error_to_string(err));
            exit(EXIT_FAILURE);
         }

         for (z = 0; (int)z < cipher_descriptor[x].block_length; z++) {
            pt[z] = (unsigned char)z;
         }
         for (w = 0; w < 50; w++) {
             cipher_descriptor[x].ecb_encrypt(pt, pt, &skey);
             fprintf(out, "%2lu: ", w);
             for (z = 0; (int)z < cipher_descriptor[x].block_length; z++) {
                fprintf(out, "%02X", pt[z]);
             }
             fprintf(out, "\n");

             /* reschedule a new key */
             for (z = 0; z < (unsigned long)kl; z++) {
                 key[z] = pt[z % cipher_descriptor[x].block_length];
             }
             if ((err = cipher_descriptor[x].setup(key, kl, 0, &skey)) != CRYPT_OK) {
                printf("cipher setup2 error: %s\n", error_to_string(err));
                exit(EXIT_FAILURE);
             }
         }
         fprintf(out, "\n");
         XFREE(key);
     }
     fprintf(out, "\n");
  }
  fclose(out);
}

void hmac_gen(void)
{
   unsigned char key[MAXBLOCKSIZE], output[MAXBLOCKSIZE], *input;
   int x, y, z, err;
   FILE *out;
   unsigned long len;

   out = fopen("hmac_tv.txt", "w");

   fprintf(out,
"HMAC Tests.  In these tests messages of N bytes long (00,01,02,...,NN-1) are HMACed.  The initial key is\n"
"of the same format (the same length as the HASH output size).  The HMAC key in step N+1 is the HMAC output of\n"
"step N.\n\n");

   for (x = 0; hash_descriptor[x].name != NULL; x++) {
      fprintf(out, "HMAC-%s\n", hash_descriptor[x].name);

      /* initial key */
      for (y = 0; y < (int)hash_descriptor[x].hashsize; y++) {
          key[y] = (y&255);
      }

      input = XMALLOC(hash_descriptor[x].blocksize * 2 + 1);
      if (input == NULL) {
         perror("Can't malloc memory");
         exit(EXIT_FAILURE);
      }

      for (y = 0; y <= (int)(hash_descriptor[x].blocksize * 2); y++) {
         for (z = 0; z < y; z++) {
            input[z] = (unsigned char)(z & 255);
         }
         len = sizeof(output);
         if ((err = hmac_memory(x, key, hash_descriptor[x].hashsize, input, y, output, &len)) != CRYPT_OK) {
            printf("Error hmacing: %s\n", error_to_string(err));
            exit(EXIT_FAILURE);
         }
         fprintf(out, "%3d: ", y);
         for (z = 0; z <(int) len; z++) {
            fprintf(out, "%02X", output[z]);
         }
         fprintf(out, "\n");

         /* forward the key */
         memcpy(key, output, hash_descriptor[x].hashsize);
      }
      XFREE(input);
      fprintf(out, "\n");
   }
   fclose(out);
}

void omac_gen(void)
{
#ifdef LTC_OMAC
   unsigned char key[MAXBLOCKSIZE], output[MAXBLOCKSIZE], input[MAXBLOCKSIZE*2+2];
   int err, x, y, z, kl;
   FILE *out;
   unsigned long len;

   out = fopen("omac_tv.txt", "w");

   fprintf(out,
"OMAC Tests.  In these tests messages of N bytes long (00,01,02,...,NN-1) are OMAC'ed.  The initial key is\n"
"of the same format (length specified per cipher).  The OMAC key in step N+1 is the OMAC output of\n"
"step N (repeated as required to fill the array).\n\n");

   for (x = 0; cipher_descriptor[x].name != NULL; x++) {
      kl = cipher_descriptor[x].block_length;

      /* skip ciphers which do not have 64 or 128 bit block sizes */
      if (kl != 8 && kl != 16) continue;

      if (cipher_descriptor[x].keysize(&kl) != CRYPT_OK) {
         kl = cipher_descriptor[x].max_key_length;
      }
      fprintf(out, "OMAC-%s (%d byte key)\n", cipher_descriptor[x].name, kl);

      /* initial key/block */
      for (y = 0; y < kl; y++) {
          key[y] = (y & 255);
      }

      for (y = 0; y <= (int)(cipher_descriptor[x].block_length*2); y++) {
         for (z = 0; z < y; z++) {
            input[z] = (unsigned char)(z & 255);
         }
         len = sizeof(output);
         if ((err = omac_memory(x, key, kl, input, y, output, &len)) != CRYPT_OK) {
            printf("Error omacing: %s\n", error_to_string(err));
            exit(EXIT_FAILURE);
         }
         fprintf(out, "%3d: ", y);
         for (z = 0; z <(int)len; z++) {
            fprintf(out, "%02X", output[z]);
         }
         fprintf(out, "\n");

         /* forward the key */
         for (z = 0; z < kl; z++) {
             key[z] = output[z % len];
         }
      }
      fprintf(out, "\n");
   }
   fclose(out);
#endif
}

void pmac_gen(void)
{
#ifdef LTC_PMAC
   unsigned char key[MAXBLOCKSIZE], output[MAXBLOCKSIZE], input[MAXBLOCKSIZE*2+2];
   int err, x, y, z, kl;
   FILE *out;
   unsigned long len;

   out = fopen("pmac_tv.txt", "w");

   fprintf(out,
"PMAC Tests.  In these tests messages of N bytes long (00,01,02,...,NN-1) are PMAC'ed.  The initial key is\n"
"of the same format (length specified per cipher).  The PMAC key in step N+1 is the PMAC output of\n"
"step N (repeated as required to fill the array).\n\n");

   for (x = 0; cipher_descriptor[x].name != NULL; x++) {
      kl = cipher_descriptor[x].block_length;

      /* skip ciphers which do not have 64 or 128 bit block sizes */
      if (kl != 8 && kl != 16) continue;

      if (cipher_descriptor[x].keysize(&kl) != CRYPT_OK) {
         kl = cipher_descriptor[x].max_key_length;
      }
      fprintf(out, "PMAC-%s (%d byte key)\n", cipher_descriptor[x].name, kl);

      /* initial key/block */
      for (y = 0; y < kl; y++) {
          key[y] = (y & 255);
      }

      for (y = 0; y <= (int)(cipher_descriptor[x].block_length*2); y++) {
         for (z = 0; z < y; z++) {
            input[z] = (unsigned char)(z & 255);
         }
         len = sizeof(output);
         if ((err = pmac_memory(x, key, kl, input, y, output, &len)) != CRYPT_OK) {
            printf("Error omacing: %s\n", error_to_string(err));
            exit(EXIT_FAILURE);
         }
         fprintf(out, "%3d: ", y);
         for (z = 0; z <(int)len; z++) {
            fprintf(out, "%02X", output[z]);
         }
         fprintf(out, "\n");

         /* forward the key */
         for (z = 0; z < kl; z++) {
             key[z] = output[z % len];
         }
      }
      fprintf(out, "\n");
   }
   fclose(out);
#endif
}

void eax_gen(void)
{
#ifdef LTC_EAX_MODE
   int err, kl, x, y1, z;
   FILE *out;
   unsigned char key[MAXBLOCKSIZE], nonce[MAXBLOCKSIZE*2], header[MAXBLOCKSIZE*2],
                 plaintext[MAXBLOCKSIZE*2], tag[MAXBLOCKSIZE];
   unsigned long len;

   out = fopen("eax_tv.txt", "w");
   fprintf(out, "EAX Test Vectors.  Uses the 00010203...NN-1 pattern for header/nonce/plaintext/key.  The outputs\n"
                "are of the form ciphertext,tag for a given NN.  The key for step N>1 is the tag of the previous\n"
                "step repeated sufficiently.\n\n");

   for (x = 0; cipher_descriptor[x].name != NULL; x++) {
      kl = cipher_descriptor[x].block_length;

      /* skip ciphers which do not have 64 or 128 bit block sizes */
      if (kl != 8 && kl != 16) continue;

      if (cipher_descriptor[x].keysize(&kl) != CRYPT_OK) {
         kl = cipher_descriptor[x].max_key_length;
      }
      fprintf(out, "EAX-%s (%d byte key)\n", cipher_descriptor[x].name, kl);

      /* the key */
      for (z = 0; z < kl; z++) {
          key[z] = (z & 255);
      }

      for (y1 = 0; y1 <= (int)(cipher_descriptor[x].block_length*2); y1++){
         for (z = 0; z < y1; z++) {
            plaintext[z] = (unsigned char)(z & 255);
            nonce[z]     = (unsigned char)(z & 255);
            header[z]    = (unsigned char)(z & 255);
         }
         len = sizeof(tag);
         if ((err = eax_encrypt_authenticate_memory(x, key, kl, nonce, y1, header, y1, plaintext, y1, plaintext, tag, &len)) != CRYPT_OK) {
            printf("Error EAX'ing: %s\n", error_to_string(err));
            exit(EXIT_FAILURE);
         }
         fprintf(out, "%3d: ", y1);
         for (z = 0; z < y1; z++) {
            fprintf(out, "%02X", plaintext[z]);
         }
         fprintf(out, ", ");
         for (z = 0; z <(int)len; z++) {
            fprintf(out, "%02X", tag[z]);
         }
         fprintf(out, "\n");

         /* forward the key */
         for (z = 0; z < kl; z++) {
             key[z] = tag[z % len];
         }
      }
      fprintf(out, "\n");
   }
   fclose(out);
#endif
}

void ocb_gen(void)
{
#ifdef LTC_OCB_MODE
   int err, kl, x, y1, z;
   FILE *out;
   unsigned char key[MAXBLOCKSIZE], nonce[MAXBLOCKSIZE*2],
                 plaintext[MAXBLOCKSIZE*2], tag[MAXBLOCKSIZE];
   unsigned long len;

   out = fopen("ocb_tv.txt", "w");
   fprintf(out, "OCB Test Vectors.  Uses the 00010203...NN-1 pattern for nonce/plaintext/key.  The outputs\n"
                "are of the form ciphertext,tag for a given NN.  The key for step N>1 is the tag of the previous\n"
                "step repeated sufficiently.  The nonce is fixed throughout.\n\n");

   for (x = 0; cipher_descriptor[x].name != NULL; x++) {
      kl = cipher_descriptor[x].block_length;

      /* skip ciphers which do not have 64 or 128 bit block sizes */
      if (kl != 8 && kl != 16) continue;

      if (cipher_descriptor[x].keysize(&kl) != CRYPT_OK) {
         kl = cipher_descriptor[x].max_key_length;
      }
      fprintf(out, "OCB-%s (%d byte key)\n", cipher_descriptor[x].name, kl);

      /* the key */
      for (z = 0; z < kl; z++) {
          key[z] = (z & 255);
      }

      /* fixed nonce */
      for (z = 0; z < cipher_descriptor[x].block_length; z++) {
          nonce[z] = z;
      }

      for (y1 = 0; y1 <= (int)(cipher_descriptor[x].block_length*2); y1++){
         for (z = 0; z < y1; z++) {
            plaintext[z] = (unsigned char)(z & 255);
         }
         len = sizeof(tag);
         if ((err = ocb_encrypt_authenticate_memory(x, key, kl, nonce, plaintext, y1, plaintext, tag, &len)) != CRYPT_OK) {
            printf("Error OCB'ing: %s\n", error_to_string(err));
            exit(EXIT_FAILURE);
         }
         fprintf(out, "%3d: ", y1);
         for (z = 0; z < y1; z++) {
            fprintf(out, "%02X", plaintext[z]);
         }
         fprintf(out, ", ");
         for (z = 0; z <(int)len; z++) {
            fprintf(out, "%02X", tag[z]);
         }
         fprintf(out, "\n");

         /* forward the key */
         for (z = 0; z < kl; z++) {
             key[z] = tag[z % len];
         }
      }
      fprintf(out, "\n");
   }
   fclose(out);
#endif
}

void ocb3_gen(void)
{
#ifdef LTC_OCB3_MODE
   int err, kl, x, y1, z, noncelen;
   FILE *out;
   unsigned char key[MAXBLOCKSIZE], nonce[MAXBLOCKSIZE*2],
                 plaintext[MAXBLOCKSIZE*2], tag[MAXBLOCKSIZE];
   unsigned long len;

   out = fopen("ocb3_tv.txt", "w");
   fprintf(out, "OCB3 Test Vectors.  Uses the 00010203...NN-1 pattern for nonce/plaintext/key.  The outputs\n"
                "are of the form ciphertext,tag for a given NN.  The key for step N>1 is the tag of the previous\n"
                "step repeated sufficiently.  The nonce is fixed throughout. AAD is fixed to 3 bytes (ASCII) 'AAD'.\n\n");

   for (x = 0; cipher_descriptor[x].name != NULL; x++) {
      kl = cipher_descriptor[x].block_length;

      /* skip ciphers which do not have 64 or 128 bit block sizes */
      if (kl != 16) continue;

      if (cipher_descriptor[x].keysize(&kl) != CRYPT_OK) {
         kl = cipher_descriptor[x].max_key_length;
      }
      fprintf(out, "OCB3-%s (%d byte key)\n", cipher_descriptor[x].name, kl);

      /* the key */
      for (z = 0; z < kl; z++) {
          key[z] = (z & 255);
      }

      /* fixed nonce */
      noncelen = MIN(15, cipher_descriptor[x].block_length);
      for (z = 0; z < noncelen; z++) {
          nonce[z] = z;
      }

      for (y1 = 0; y1 <= (int)(cipher_descriptor[x].block_length*2); y1++){
         for (z = 0; z < y1; z++) {
            plaintext[z] = (unsigned char)(z & 255);
         }
         len = 16;
         if ((err = ocb3_encrypt_authenticate_memory(x, key, kl, nonce, noncelen, (unsigned char*)"AAD", 3, plaintext, y1, plaintext, tag, &len)) != CRYPT_OK) {
            printf("Error OCB3'ing: %s\n", error_to_string(err));
            exit(EXIT_FAILURE);
         }
         fprintf(out, "%3d: ", y1);
         for (z = 0; z < y1; z++) {
            fprintf(out, "%02X", plaintext[z]);
         }
         fprintf(out, ", ");
         for (z = 0; z <(int)len; z++) {
            fprintf(out, "%02X", tag[z]);
         }
         fprintf(out, "\n");

         /* forward the key */
         for (z = 0; z < kl; z++) {
             key[z] = tag[z % len];
         }
      }
      fprintf(out, "\n");
   }
   fclose(out);
#endif
}

void ccm_gen(void)
{
#ifdef LTC_CCM_MODE
   int err, kl, x, y1, z;
   FILE *out;
   unsigned char key[MAXBLOCKSIZE], nonce[MAXBLOCKSIZE*2],
                 plaintext[MAXBLOCKSIZE*2], tag[MAXBLOCKSIZE];
   unsigned long len;

   out = fopen("ccm_tv.txt", "w");
   fprintf(out, "CCM Test Vectors.  Uses the 00010203...NN-1 pattern for nonce/header/plaintext/key.  The outputs\n"
                "are of the form ciphertext,tag for a given NN.  The key for step N>1 is the tag of the previous\n"
                "step repeated sufficiently.  The nonce is fixed throughout at 13 bytes 000102...\n\n");

   for (x = 0; cipher_descriptor[x].name != NULL; x++) {
      kl = cipher_descriptor[x].block_length;

      /* skip ciphers which do not have 128 bit block sizes */
      if (kl != 16) continue;

      if (cipher_descriptor[x].keysize(&kl) != CRYPT_OK) {
         kl = cipher_descriptor[x].max_key_length;
      }
      fprintf(out, "CCM-%s (%d byte key)\n", cipher_descriptor[x].name, kl);

      /* the key */
      for (z = 0; z < kl; z++) {
          key[z] = (z & 255);
      }

      /* fixed nonce */
      for (z = 0; z < cipher_descriptor[x].block_length; z++) {
          nonce[z] = z;
      }

      for (y1 = 0; y1 <= (int)(cipher_descriptor[x].block_length*2); y1++){
         for (z = 0; z < y1; z++) {
            plaintext[z] = (unsigned char)(z & 255);
         }
         len = sizeof(tag);
         if ((err = ccm_memory(x, key, kl, NULL, nonce, 13, plaintext, y1, plaintext, y1, plaintext, tag, &len, CCM_ENCRYPT)) != CRYPT_OK) {
            printf("Error CCM'ing: %s\n", error_to_string(err));
            exit(EXIT_FAILURE);
         }
         if (len == 0) {
            printf("Error CCM'ing: zero length\n");
            exit(EXIT_FAILURE);
         }
         fprintf(out, "%3d: ", y1);
         for (z = 0; z < y1; z++) {
            fprintf(out, "%02X", plaintext[z]);
         }
         fprintf(out, ", ");
         for (z = 0; z <(int)len; z++) {
            fprintf(out, "%02X", tag[z]);
         }
         fprintf(out, "\n");

         /* forward the key */
         for (z = 0; z < kl; z++) {
             key[z] = tag[z % len];
         }
      }
      fprintf(out, "\n");
   }
   fclose(out);
#endif
}

void gcm_gen(void)
{
#ifdef LTC_GCM_MODE
   int err, kl, x, y1, z;
   FILE *out;
   unsigned char key[MAXBLOCKSIZE], plaintext[MAXBLOCKSIZE*2], tag[MAXBLOCKSIZE];
   unsigned long len;

   out = fopen("gcm_tv.txt", "w");
   fprintf(out, "GCM Test Vectors.  Uses the 00010203...NN-1 pattern for nonce/header/plaintext/key.  The outputs\n"
                "are of the form ciphertext,tag for a given NN.  The key for step N>1 is the tag of the previous\n"
                "step repeated sufficiently.  The nonce is fixed throughout at 13 bytes 000102...\n\n");

   for (x = 0; cipher_descriptor[x].name != NULL; x++) {
      kl = cipher_descriptor[x].block_length;

      /* skip ciphers which do not have 128 bit block sizes */
      if (kl != 16) continue;

      if (cipher_descriptor[x].keysize(&kl) != CRYPT_OK) {
         kl = cipher_descriptor[x].max_key_length;
      }
      fprintf(out, "GCM-%s (%d byte key)\n", cipher_descriptor[x].name, kl);

      /* the key */
      for (z = 0; z < kl; z++) {
          key[z] = (z & 255);
      }

      for (y1 = 1; y1 <= (int)(cipher_descriptor[x].block_length*2); y1++){
         for (z = 0; z < y1; z++) {
            plaintext[z] = (unsigned char)(z & 255);
         }
         len = sizeof(tag);
         if ((err = gcm_memory(x, key, kl, plaintext, y1, plaintext, y1, plaintext, y1, plaintext, tag, &len, GCM_ENCRYPT)) != CRYPT_OK) {
            printf("Error GCM'ing: %s\n", error_to_string(err));
            exit(EXIT_FAILURE);
         }
         if (len == 0) {
            printf("Error GCM'ing: zero length\n");
            exit(EXIT_FAILURE);
         }
         fprintf(out, "%3d: ", y1);
         for (z = 0; z < y1; z++) {
            fprintf(out, "%02X", plaintext[z]);
         }
         fprintf(out, ", ");
         for (z = 0; z <(int)len; z++) {
            fprintf(out, "%02X", tag[z]);
         }
         fprintf(out, "\n");

         /* forward the key */
         for (z = 0; z < kl; z++) {
             key[z] = tag[z % len];
         }
      }
      fprintf(out, "\n");
   }
   fclose(out);
#endif
}

void base64_gen(void)
{
   FILE *out;
   unsigned char dst[256], src[32], ch;
   unsigned long x, len;

   out = fopen("base64_tv.txt", "w");
   fprintf(out, "Base64 vectors.  These are the base64 encodings of the strings 00,01,02...NN-1\n\n");
   for (x = 0; x <= 32; x++) {
       for (ch = 0; ch < x; ch++) {
           src[ch] = ch;
       }
       len = sizeof(dst);
       base64_encode(src, x, dst, &len);
       fprintf(out, "%2lu: %s\n", x, dst);
   }
   fclose(out);
}

void math_gen(void)
{
}

void ecc_gen(void)
{
   FILE         *out;
   unsigned char str[512];
   void          *k, *order, *modulus;
   ecc_point    *G, *R;
   int           x;

   out = fopen("ecc_tv.txt", "w");
   fprintf(out, "ecc vectors.  These are for kG for k=1,3,9,27,...,3**n until k > order of the curve outputs are <k,x,y> triplets\n\n");
   G = ltc_ecc_new_point();
   R = ltc_ecc_new_point();
   mp_init(&k);
   mp_init(&order);
   mp_init(&modulus);

   for (x = 0; ltc_ecc_sets[x].size != 0; x++) {
        fprintf(out, "ECC-%d\n", ltc_ecc_sets[x].size*8);
        mp_set(k, 1);

        mp_read_radix(order,   (char *)ltc_ecc_sets[x].order, 16);
        mp_read_radix(modulus, (char *)ltc_ecc_sets[x].prime, 16);
        mp_read_radix(G->x,    (char *)ltc_ecc_sets[x].Gx,    16);
        mp_read_radix(G->y,    (char *)ltc_ecc_sets[x].Gy,    16);
        mp_set(G->z, 1);

        while (mp_cmp(k, order) == LTC_MP_LT) {
            ltc_mp.ecc_ptmul(k, G, R, modulus, 1);
            mp_tohex(k,    (char*)str); fprintf(out, "%s, ", (char*)str);
            mp_tohex(R->x, (char*)str); fprintf(out, "%s, ", (char*)str);
            mp_tohex(R->y, (char*)str); fprintf(out, "%s\n", (char*)str);
            mp_mul_d(k, 3, k);
        }
   }
   mp_clear_multi(k, order, modulus, NULL);
   ltc_ecc_del_point(G);
   ltc_ecc_del_point(R);
   fclose(out);
}

void lrw_gen(void)
{
#ifdef LTC_LRW_MODE
   FILE *out;
   unsigned char tweak[16], key[16], iv[16], buf[1024];
   int x, y, err;
   symmetric_LRW lrw;

   /* initialize default key and tweak */
   for (x = 0; x < 16; x++) {
      tweak[x] = key[x] = iv[x] = x;
   }

   out = fopen("lrw_tv.txt", "w");
   for (x = 16; x < (int)(sizeof(buf)); x += 16) {
       if ((err = lrw_start(find_cipher("aes"), iv, key, 16, tweak, 0, &lrw)) != CRYPT_OK) {
          fprintf(stderr, "Error starting LRW-AES: %s\n", error_to_string(err));
          exit(EXIT_FAILURE);
       }

       /* encrypt incremental */
       for (y = 0; y < x; y++) {
           buf[y] = y & 255;
       }

       if ((err = lrw_encrypt(buf, buf, x, &lrw)) != CRYPT_OK) {
          fprintf(stderr, "Error encrypting with LRW-AES: %s\n", error_to_string(err));
          exit(EXIT_FAILURE);
       }

       /* display it */
       fprintf(out, "%d:", x);
       for (y = 0; y < x; y++) {
          fprintf(out, "%02x", buf[y]);
       }
       fprintf(out, "\n");

       /* reset IV */
       if ((err = lrw_setiv(iv, 16, &lrw)) != CRYPT_OK) {
          fprintf(stderr, "Error setting IV: %s\n", error_to_string(err));
          exit(EXIT_FAILURE);
       }

       /* copy new tweak, iv and key */
       for (y = 0; y < 16; y++) {
          key[y]   = buf[y];
          iv[y]    = buf[(y+16)%x];
          tweak[y] = buf[(y+32)%x];
       }

       if ((err = lrw_decrypt(buf, buf, x, &lrw)) != CRYPT_OK) {
          fprintf(stderr, "Error decrypting with LRW-AES: %s\n", error_to_string(err));
          exit(EXIT_FAILURE);
       }

       /* display it */
       fprintf(out, "%d:", x);
       for (y = 0; y < x; y++) {
          fprintf(out, "%02x", buf[y]);
       }
       fprintf(out, "\n");
       lrw_done(&lrw);
   }
   fclose(out);
#endif
}

int main(void)
{
   register_all_ciphers();
   register_all_hashes();
   register_all_prngs();
#ifdef USE_LTM
   ltc_mp = ltm_desc;
#elif defined(USE_TFM)
   ltc_mp = tfm_desc;
#elif defined(USE_GMP)
   ltc_mp = gmp_desc;
#elif defined(EXT_MATH_LIB)
   extern ltc_math_descriptor EXT_MATH_LIB;
   ltc_mp = EXT_MATH_LIB;
#else
   fprintf(stderr, "No MPI provider available\n");
   exit(EXIT_FAILURE);
#endif

   printf("Generating hash   vectors..."); fflush(stdout); hash_gen();   printf("done\n");
   printf("Generating cipher vectors..."); fflush(stdout); cipher_gen(); printf("done\n");
   printf("Generating HMAC   vectors..."); fflush(stdout); hmac_gen();   printf("done\n");
#ifdef LTC_OMAC
   printf("Generating OMAC   vectors..."); fflush(stdout); omac_gen();   printf("done\n");
#endif
#ifdef LTC_PMAC
   printf("Generating PMAC   vectors..."); fflush(stdout); pmac_gen();   printf("done\n");
#endif
#ifdef LTC_EAX_MODE
   printf("Generating EAX    vectors..."); fflush(stdout); eax_gen();    printf("done\n");
#endif
#ifdef LTC_OCB_MODE
   printf("Generating OCB    vectors..."); fflush(stdout); ocb_gen();    printf("done\n");
#endif
#ifdef LTC_OCB3_MODE
   printf("Generating OCB3   vectors..."); fflush(stdout); ocb3_gen();   printf("done\n");
#endif
#ifdef LTC_CCM_MODE
   printf("Generating CCM    vectors..."); fflush(stdout); ccm_gen();    printf("done\n");
#endif
#ifdef LTC_GCM_MODE
   printf("Generating GCM    vectors..."); fflush(stdout); gcm_gen();    printf("done\n");
#endif
   printf("Generating BASE64 vectors..."); fflush(stdout); base64_gen(); printf("done\n");
   printf("Generating MATH   vectors..."); fflush(stdout); math_gen();   printf("done\n");
   printf("Generating ECC    vectors..."); fflush(stdout); ecc_gen();    printf("done\n");
#ifdef LTC_LRW_MODE
   printf("Generating LRW    vectors..."); fflush(stdout); lrw_gen();    printf("done\n");
#endif
   return 0;
}

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */