view libtomcrypt/src/ciphers/safer/safer.c @ 447:278805938dcf

Patch from Nicolai Ehemann to try binding before going to the background, so that if it exits early (because something's already listening etc) then it will return an exitcode of 1.
author Matt Johnston <matt@ucc.asn.au>
date Thu, 19 Jul 2007 15:54:18 +0000
parents 0cbe8f6dbf9e
children f849a5ca2efc
line wrap: on
line source

/* LibTomCrypt, modular cryptographic library -- Tom St Denis
 *
 * LibTomCrypt is a library that provides various cryptographic
 * algorithms in a highly modular and flexible manner.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 *
 * Tom St Denis, [email protected], http://libtomcrypt.com
 */

/*******************************************************************************
*
* FILE:           safer.c
*
* DESCRIPTION:    block-cipher algorithm SAFER (Secure And Fast Encryption
*                 Routine) in its four versions: SAFER K-64, SAFER K-128,
*                 SAFER SK-64 and SAFER SK-128.
*
* AUTHOR:         Richard De Moliner ([email protected])
*                 Signal and Information Processing Laboratory
*                 Swiss Federal Institute of Technology
*                 CH-8092 Zuerich, Switzerland
*
* DATE:           September 9, 1995
*
* CHANGE HISTORY:
*
*******************************************************************************/

#include <tomcrypt.h>

#ifdef SAFER

const struct ltc_cipher_descriptor 
   safer_k64_desc = {
   "safer-k64", 
   8, 8, 8, 8, SAFER_K64_DEFAULT_NOF_ROUNDS,
   &safer_k64_setup,
   &safer_ecb_encrypt,
   &safer_ecb_decrypt,
   &safer_k64_test,
   &safer_done,
   &safer_64_keysize,
   NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
   },

   safer_sk64_desc = {
   "safer-sk64",
   9, 8, 8, 8, SAFER_SK64_DEFAULT_NOF_ROUNDS,
   &safer_sk64_setup,
   &safer_ecb_encrypt,
   &safer_ecb_decrypt,
   &safer_sk64_test,
   &safer_done,
   &safer_64_keysize,
   NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
   },

   safer_k128_desc = {
   "safer-k128",
   10, 16, 16, 8, SAFER_K128_DEFAULT_NOF_ROUNDS,
   &safer_k128_setup,
   &safer_ecb_encrypt,
   &safer_ecb_decrypt,
   &safer_sk128_test,
   &safer_done,
   &safer_128_keysize,
   NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
   },

   safer_sk128_desc = {
   "safer-sk128",
   11, 16, 16, 8, SAFER_SK128_DEFAULT_NOF_ROUNDS,
   &safer_sk128_setup,
   &safer_ecb_encrypt,
   &safer_ecb_decrypt,
   &safer_sk128_test,
   &safer_done,
   &safer_128_keysize,
   NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
   };

/******************* Constants ************************************************/
/* #define TAB_LEN      256  */

/******************* Assertions ***********************************************/

/******************* Macros ***************************************************/
#define ROL8(x, n)   ((unsigned char)((unsigned int)(x) << (n)\
                                     |(unsigned int)((x) & 0xFF) >> (8 - (n))))
#define EXP(x)       safer_ebox[(x) & 0xFF]
#define LOG(x)       safer_lbox[(x) & 0xFF]
#define PHT(x, y)    { y += x; x += y; }
#define IPHT(x, y)   { x -= y; y -= x; }

/******************* Types ****************************************************/
extern const unsigned char safer_ebox[], safer_lbox[];

#ifdef LTC_CLEAN_STACK
static void _Safer_Expand_Userkey(const unsigned char *userkey_1,
                                 const unsigned char *userkey_2,
                                 unsigned int nof_rounds,
                                 int strengthened,
                                 safer_key_t key)
#else
static void Safer_Expand_Userkey(const unsigned char *userkey_1,
                                 const unsigned char *userkey_2,
                                 unsigned int nof_rounds,
                                 int strengthened,
                                 safer_key_t key)
#endif
{   unsigned int i, j, k;
    unsigned char ka[SAFER_BLOCK_LEN + 1];
    unsigned char kb[SAFER_BLOCK_LEN + 1];

    if (SAFER_MAX_NOF_ROUNDS < nof_rounds)
        nof_rounds = SAFER_MAX_NOF_ROUNDS;
    *key++ = (unsigned char)nof_rounds;
    ka[SAFER_BLOCK_LEN] = (unsigned char)0;
    kb[SAFER_BLOCK_LEN] = (unsigned char)0;
    k = 0;
    for (j = 0; j < SAFER_BLOCK_LEN; j++) {
        ka[j] = ROL8(userkey_1[j], 5);
        ka[SAFER_BLOCK_LEN] ^= ka[j];
        kb[j] = *key++ = userkey_2[j];
        kb[SAFER_BLOCK_LEN] ^= kb[j];
    }
    for (i = 1; i <= nof_rounds; i++) {
        for (j = 0; j < SAFER_BLOCK_LEN + 1; j++) {
            ka[j] = ROL8(ka[j], 6);
            kb[j] = ROL8(kb[j], 6);
        }
        if (strengthened) {
           k = 2 * i - 1;
           while (k >= (SAFER_BLOCK_LEN + 1)) { k -= SAFER_BLOCK_LEN + 1; }
        }
        for (j = 0; j < SAFER_BLOCK_LEN; j++) {
            if (strengthened) {
                *key++ = (ka[k]
                                + safer_ebox[(int)safer_ebox[(int)((18 * i + j + 1)&0xFF)]]) & 0xFF;
                if (++k == (SAFER_BLOCK_LEN + 1)) { k = 0; }
            } else {
                *key++ = (ka[j] + safer_ebox[(int)safer_ebox[(int)((18 * i + j + 1)&0xFF)]]) & 0xFF;
            }
        }
        if (strengthened) {
           k = 2 * i;
           while (k >= (SAFER_BLOCK_LEN + 1)) { k -= SAFER_BLOCK_LEN + 1; }
        }
        for (j = 0; j < SAFER_BLOCK_LEN; j++) {
            if (strengthened) {
                *key++ = (kb[k]
                                + safer_ebox[(int)safer_ebox[(int)((18 * i + j + 10)&0xFF)]]) & 0xFF;
                if (++k == (SAFER_BLOCK_LEN + 1)) { k = 0; }
            } else {
                *key++ = (kb[j] + safer_ebox[(int)safer_ebox[(int)((18 * i + j + 10)&0xFF)]]) & 0xFF;
            }
        }
    }
    
#ifdef LTC_CLEAN_STACK
    zeromem(ka, sizeof(ka));
    zeromem(kb, sizeof(kb));
#endif
}

#ifdef LTC_CLEAN_STACK
static void Safer_Expand_Userkey(const unsigned char *userkey_1,
                                 const unsigned char *userkey_2,
                                 unsigned int nof_rounds,
                                 int strengthened,
                                 safer_key_t key)
{
   _Safer_Expand_Userkey(userkey_1, userkey_2, nof_rounds, strengthened, key);
   burn_stack(sizeof(unsigned char) * (2 * (SAFER_BLOCK_LEN + 1)) + sizeof(unsigned int)*2);
}
#endif

int safer_k64_setup(const unsigned char *key, int keylen, int numrounds, symmetric_key *skey)
{
   LTC_ARGCHK(key != NULL);
   LTC_ARGCHK(skey != NULL);

   if (numrounds != 0 && (numrounds < 6 || numrounds > SAFER_MAX_NOF_ROUNDS)) {
      return CRYPT_INVALID_ROUNDS;
   }

   if (keylen != 8) {
      return CRYPT_INVALID_KEYSIZE;
   }

   Safer_Expand_Userkey(key, key, (unsigned int)(numrounds != 0 ?numrounds:SAFER_K64_DEFAULT_NOF_ROUNDS), 0, skey->safer.key);
   return CRYPT_OK;
}
   
int safer_sk64_setup(const unsigned char *key, int keylen, int numrounds, symmetric_key *skey)
{
   LTC_ARGCHK(key != NULL);
   LTC_ARGCHK(skey != NULL);

   if (numrounds != 0 && (numrounds < 6 || numrounds > SAFER_MAX_NOF_ROUNDS)) {
      return CRYPT_INVALID_ROUNDS;
   }

   if (keylen != 8) {
      return CRYPT_INVALID_KEYSIZE;
   }

   Safer_Expand_Userkey(key, key, (unsigned int)(numrounds != 0 ?numrounds:SAFER_SK64_DEFAULT_NOF_ROUNDS), 1, skey->safer.key);
   return CRYPT_OK;
}

int safer_k128_setup(const unsigned char *key, int keylen, int numrounds, symmetric_key *skey)
{
   LTC_ARGCHK(key != NULL);
   LTC_ARGCHK(skey != NULL);

   if (numrounds != 0 && (numrounds < 6 || numrounds > SAFER_MAX_NOF_ROUNDS)) {
      return CRYPT_INVALID_ROUNDS;
   }

   if (keylen != 16) {
      return CRYPT_INVALID_KEYSIZE;
   }

   Safer_Expand_Userkey(key, key+8, (unsigned int)(numrounds != 0 ?numrounds:SAFER_K128_DEFAULT_NOF_ROUNDS), 0, skey->safer.key);
   return CRYPT_OK;
}

int safer_sk128_setup(const unsigned char *key, int keylen, int numrounds, symmetric_key *skey)
{
   LTC_ARGCHK(key != NULL);
   LTC_ARGCHK(skey != NULL);

   if (numrounds != 0 && (numrounds < 6 || numrounds > SAFER_MAX_NOF_ROUNDS)) {
      return CRYPT_INVALID_ROUNDS;
   }

   if (keylen != 16) {
      return CRYPT_INVALID_KEYSIZE;
   }

   Safer_Expand_Userkey(key, key+8, (unsigned int)(numrounds != 0?numrounds:SAFER_SK128_DEFAULT_NOF_ROUNDS), 1, skey->safer.key);
   return CRYPT_OK;
}

#ifdef LTC_CLEAN_STACK
static int _safer_ecb_encrypt(const unsigned char *block_in,
                             unsigned char *block_out,
                             symmetric_key *skey)
#else
int safer_ecb_encrypt(const unsigned char *block_in,
                             unsigned char *block_out,
                             symmetric_key *skey)
#endif
{   unsigned char a, b, c, d, e, f, g, h, t;
    unsigned int round;
    unsigned char *key;

    LTC_ARGCHK(block_in != NULL);
    LTC_ARGCHK(block_out != NULL);
    LTC_ARGCHK(skey != NULL);

    key = skey->safer.key;
    a = block_in[0]; b = block_in[1]; c = block_in[2]; d = block_in[3];
    e = block_in[4]; f = block_in[5]; g = block_in[6]; h = block_in[7];
    if (SAFER_MAX_NOF_ROUNDS < (round = *key)) round = SAFER_MAX_NOF_ROUNDS;
    while(round-- > 0)
    {
        a ^= *++key; b += *++key; c += *++key; d ^= *++key;
        e ^= *++key; f += *++key; g += *++key; h ^= *++key;
        a = EXP(a) + *++key; b = LOG(b) ^ *++key;
        c = LOG(c) ^ *++key; d = EXP(d) + *++key;
        e = EXP(e) + *++key; f = LOG(f) ^ *++key;
        g = LOG(g) ^ *++key; h = EXP(h) + *++key;
        PHT(a, b); PHT(c, d); PHT(e, f); PHT(g, h);
        PHT(a, c); PHT(e, g); PHT(b, d); PHT(f, h);
        PHT(a, e); PHT(b, f); PHT(c, g); PHT(d, h);
        t = b; b = e; e = c; c = t; t = d; d = f; f = g; g = t;
    }
    a ^= *++key; b += *++key; c += *++key; d ^= *++key;
    e ^= *++key; f += *++key; g += *++key; h ^= *++key;
    block_out[0] = a & 0xFF; block_out[1] = b & 0xFF;
    block_out[2] = c & 0xFF; block_out[3] = d & 0xFF;
    block_out[4] = e & 0xFF; block_out[5] = f & 0xFF;
    block_out[6] = g & 0xFF; block_out[7] = h & 0xFF;
    return CRYPT_OK;
}

#ifdef LTC_CLEAN_STACK
int safer_ecb_encrypt(const unsigned char *block_in,
                             unsigned char *block_out,
                             symmetric_key *skey)
{
    int err = _safer_ecb_encrypt(block_in, block_out, skey);
    burn_stack(sizeof(unsigned char) * 9 + sizeof(unsigned int) + sizeof(unsigned char *));
    return err;
}
#endif

#ifdef LTC_CLEAN_STACK
static int _safer_ecb_decrypt(const unsigned char *block_in,
                             unsigned char *block_out,
                             symmetric_key *skey)
#else
int safer_ecb_decrypt(const unsigned char *block_in,
                             unsigned char *block_out,
                             symmetric_key *skey)
#endif
{   unsigned char a, b, c, d, e, f, g, h, t;
    unsigned int round;
    unsigned char *key;

    LTC_ARGCHK(block_in != NULL);
    LTC_ARGCHK(block_out != NULL);
    LTC_ARGCHK(skey != NULL);

    key = skey->safer.key;
    a = block_in[0]; b = block_in[1]; c = block_in[2]; d = block_in[3];
    e = block_in[4]; f = block_in[5]; g = block_in[6]; h = block_in[7];
    if (SAFER_MAX_NOF_ROUNDS < (round = *key)) round = SAFER_MAX_NOF_ROUNDS;
    key += SAFER_BLOCK_LEN * (1 + 2 * round);
    h ^= *key; g -= *--key; f -= *--key; e ^= *--key;
    d ^= *--key; c -= *--key; b -= *--key; a ^= *--key;
    while (round--)
    {
        t = e; e = b; b = c; c = t; t = f; f = d; d = g; g = t;
        IPHT(a, e); IPHT(b, f); IPHT(c, g); IPHT(d, h);
        IPHT(a, c); IPHT(e, g); IPHT(b, d); IPHT(f, h);
        IPHT(a, b); IPHT(c, d); IPHT(e, f); IPHT(g, h);
        h -= *--key; g ^= *--key; f ^= *--key; e -= *--key;
        d -= *--key; c ^= *--key; b ^= *--key; a -= *--key;
        h = LOG(h) ^ *--key; g = EXP(g) - *--key;
        f = EXP(f) - *--key; e = LOG(e) ^ *--key;
        d = LOG(d) ^ *--key; c = EXP(c) - *--key;
        b = EXP(b) - *--key; a = LOG(a) ^ *--key;
    }
    block_out[0] = a & 0xFF; block_out[1] = b & 0xFF;
    block_out[2] = c & 0xFF; block_out[3] = d & 0xFF;
    block_out[4] = e & 0xFF; block_out[5] = f & 0xFF;
    block_out[6] = g & 0xFF; block_out[7] = h & 0xFF;
    return CRYPT_OK;
}

#ifdef LTC_CLEAN_STACK
int safer_ecb_decrypt(const unsigned char *block_in,
                             unsigned char *block_out,
                             symmetric_key *skey)
{
    int err = _safer_ecb_decrypt(block_in, block_out, skey);
    burn_stack(sizeof(unsigned char) * 9 + sizeof(unsigned int) + sizeof(unsigned char *));
    return err;
}
#endif

int safer_64_keysize(int *keysize)
{
   LTC_ARGCHK(keysize != NULL);
   if (*keysize < 8) {
      return CRYPT_INVALID_KEYSIZE;
   } else {
      *keysize = 8;
      return CRYPT_OK;
   }
}

int safer_128_keysize(int *keysize)
{
   LTC_ARGCHK(keysize != NULL);
   if (*keysize < 16) {
      return CRYPT_INVALID_KEYSIZE;
   } else {
      *keysize = 16;
      return CRYPT_OK;
   }
}

int safer_k64_test(void)
{
 #ifndef LTC_TEST
    return CRYPT_NOP;
 #else    
   static const unsigned char k64_pt[]  = { 1, 2, 3, 4, 5, 6, 7, 8 },
                              k64_key[] = { 8, 7, 6, 5, 4, 3, 2, 1 },
                              k64_ct[]  = { 200, 242, 156, 221, 135, 120, 62, 217 };

   symmetric_key skey;
   unsigned char buf[2][8];
   int err;

   /* test K64 */
   if ((err = safer_k64_setup(k64_key, 8, 6, &skey)) != CRYPT_OK) {
      return err;
   }
   safer_ecb_encrypt(k64_pt, buf[0], &skey);
   safer_ecb_decrypt(buf[0], buf[1], &skey);

   if (XMEMCMP(buf[0], k64_ct, 8) != 0 || XMEMCMP(buf[1], k64_pt, 8) != 0) {
      return CRYPT_FAIL_TESTVECTOR;
   }

   return CRYPT_OK;
 #endif
}


int safer_sk64_test(void)
{
 #ifndef LTC_TEST
    return CRYPT_NOP;
 #else    
   static const unsigned char sk64_pt[]  = { 1, 2, 3, 4, 5, 6, 7, 8 },
                              sk64_key[] = { 1, 2, 3, 4, 5, 6, 7, 8 },
                              sk64_ct[]  = { 95, 206, 155, 162, 5, 132, 56, 199 };

   symmetric_key skey;
   unsigned char buf[2][8];
   int err, y;

   /* test SK64 */
   if ((err = safer_sk64_setup(sk64_key, 8, 6, &skey)) != CRYPT_OK) {
      return err;
   }

   safer_ecb_encrypt(sk64_pt, buf[0], &skey);
   safer_ecb_decrypt(buf[0], buf[1], &skey);

   if (XMEMCMP(buf[0], sk64_ct, 8) != 0 || XMEMCMP(buf[1], sk64_pt, 8) != 0) {
      return CRYPT_FAIL_TESTVECTOR;
   }

      /* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */
      for (y = 0; y < 8; y++) buf[0][y] = 0;
      for (y = 0; y < 1000; y++) safer_ecb_encrypt(buf[0], buf[0], &skey);
      for (y = 0; y < 1000; y++) safer_ecb_decrypt(buf[0], buf[0], &skey);
      for (y = 0; y < 8; y++) if (buf[0][y] != 0) return CRYPT_FAIL_TESTVECTOR;

   return CRYPT_OK;
  #endif
}

/** Terminate the context 
   @param skey    The scheduled key
*/
void safer_done(symmetric_key *skey)
{
}

int safer_sk128_test(void)
{
 #ifndef LTC_TEST
    return CRYPT_NOP;
 #else    
   static const unsigned char sk128_pt[]  = { 1, 2, 3, 4, 5, 6, 7, 8 },
                              sk128_key[] = { 1, 2, 3, 4, 5, 6, 7, 8,
                                              0, 0, 0, 0, 0, 0, 0, 0 },
                              sk128_ct[]  = { 255, 120, 17, 228, 179, 167, 46, 113 };

   symmetric_key skey;
   unsigned char buf[2][8];
   int err, y;

   /* test SK128 */
   if ((err = safer_sk128_setup(sk128_key, 16, 0, &skey)) != CRYPT_OK) {
      return err;
   }
   safer_ecb_encrypt(sk128_pt, buf[0], &skey);
   safer_ecb_decrypt(buf[0], buf[1], &skey);

   if (XMEMCMP(buf[0], sk128_ct, 8) != 0 || XMEMCMP(buf[1], sk128_pt, 8) != 0) {
      return CRYPT_FAIL_TESTVECTOR;
   }

      /* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */
      for (y = 0; y < 8; y++) buf[0][y] = 0;
      for (y = 0; y < 1000; y++) safer_ecb_encrypt(buf[0], buf[0], &skey);
      for (y = 0; y < 1000; y++) safer_ecb_decrypt(buf[0], buf[0], &skey);
      for (y = 0; y < 8; y++) if (buf[0][y] != 0) return CRYPT_FAIL_TESTVECTOR;
  return CRYPT_OK;
 #endif
}

#endif




/* $Source: /cvs/libtom/libtomcrypt/src/ciphers/safer/safer.c,v $ */
/* $Revision: 1.13 $ */
/* $Date: 2006/11/08 23:01:06 $ */