view libtomcrypt/src/encauth/ccm/ccm_process.c @ 1930:299f4f19ba19

Add /usr/sbin and /sbin to default root PATH When dropbear is used in a very restricted environment (such as in a initrd), the default user shell is often also very restricted and doesn't take care of setting the PATH so the user ends up with the PATH set by dropbear. Unfortunately, dropbear always sets "/usr/bin:/bin" as default PATH even for the root user which should have /usr/sbin and /sbin too. For a concrete instance of this problem, see the "Remote Unlocking" section in this tutorial: https://paxswill.com/blog/2013/11/04/encrypted-raspberry-pi/ It speaks of a bug in the initramfs script because it's written "blkid" instead of "/sbin/blkid"... this is just because the scripts from the initramfs do not expect to have a PATH without the sbin directories and because dropbear is not setting the PATH appropriately for the root user. I'm thus suggesting to use the attached patch to fix this misbehaviour (I did not test it, but it's easy enough). It might seem anecdotic but multiple Kali users have been bitten by this. From https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=903403
author Raphael Hertzog <hertzog@debian.org>
date Mon, 09 Jul 2018 16:27:53 +0200
parents 6dba84798cd5
children
line wrap: on
line source

/* LibTomCrypt, modular cryptographic library -- Tom St Denis
 *
 * LibTomCrypt is a library that provides various cryptographic
 * algorithms in a highly modular and flexible manner.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 */
#include "tomcrypt.h"

#ifdef LTC_CCM_MODE

/**
  Process plaintext/ciphertext through CCM
  @param ccm       The CCM state
  @param pt        The plaintext
  @param ptlen     The plaintext length (ciphertext length is the same)
  @param ct        The ciphertext
  @param direction Encrypt or Decrypt mode (CCM_ENCRYPT or CCM_DECRYPT)
  @return CRYPT_OK on success
 */
int ccm_process(ccm_state *ccm,
                unsigned char *pt,     unsigned long ptlen,
                unsigned char *ct,
                int direction)
{
   unsigned char z, b;
   unsigned long y;
   int err;

   LTC_ARGCHK(ccm != NULL);

   /* Check aad has been correctly added */
   if (ccm->aadlen != ccm->current_aadlen) {
      return CRYPT_ERROR;
   }

   /* Check we do not process too much data */
   if (ccm->ptlen < ccm->current_ptlen + ptlen) {
      return CRYPT_ERROR;
   }
   ccm->current_ptlen += ptlen;

   /* now handle the PT */
   if (ptlen > 0) {
      LTC_ARGCHK(pt != NULL);
      LTC_ARGCHK(ct != NULL);

      for (y = 0; y < ptlen; y++) {
         /* increment the ctr? */
         if (ccm->CTRlen == 16) {
            for (z = 15; z > 15-ccm->L; z--) {
               ccm->ctr[z] = (ccm->ctr[z] + 1) & 255;
               if (ccm->ctr[z]) break;
            }
            if ((err = cipher_descriptor[ccm->cipher].ecb_encrypt(ccm->ctr, ccm->CTRPAD, &ccm->K)) != CRYPT_OK) {
               return err;
            }
            ccm->CTRlen = 0;
         }

         /* if we encrypt we add the bytes to the MAC first */
         if (direction == CCM_ENCRYPT) {
            b     = pt[y];
            ct[y] = b ^ ccm->CTRPAD[ccm->CTRlen++];
         } else {
            b     = ct[y] ^ ccm->CTRPAD[ccm->CTRlen++];
            pt[y] = b;
         }

         if (ccm->x == 16) {
            if ((err = cipher_descriptor[ccm->cipher].ecb_encrypt(ccm->PAD, ccm->PAD, &ccm->K)) != CRYPT_OK) {
               return err;
            }
            ccm->x = 0;
         }
         ccm->PAD[ccm->x++] ^= b;
      }
   }

   return CRYPT_OK;
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */