Mercurial > dropbear
view libtomcrypt/src/modes/lrw/lrw_start.c @ 1930:299f4f19ba19
Add /usr/sbin and /sbin to default root PATH
When dropbear is used in a very restricted environment (such as in a
initrd), the default user shell is often also very restricted
and doesn't take care of setting the PATH so the user ends up
with the PATH set by dropbear. Unfortunately, dropbear always
sets "/usr/bin:/bin" as default PATH even for the root user
which should have /usr/sbin and /sbin too.
For a concrete instance of this problem, see the "Remote Unlocking"
section in this tutorial: https://paxswill.com/blog/2013/11/04/encrypted-raspberry-pi/
It speaks of a bug in the initramfs script because it's written "blkid"
instead of "/sbin/blkid"... this is just because the scripts from the
initramfs do not expect to have a PATH without the sbin directories and
because dropbear is not setting the PATH appropriately for the root user.
I'm thus suggesting to use the attached patch to fix this misbehaviour (I
did not test it, but it's easy enough). It might seem anecdotic but
multiple Kali users have been bitten by this.
From https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=903403
author | Raphael Hertzog <hertzog@debian.org> |
---|---|
date | Mon, 09 Jul 2018 16:27:53 +0200 |
parents | 6dba84798cd5 |
children |
line wrap: on
line source
/* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. */ #include "tomcrypt.h" /** @file lrw_start.c LRW_MODE implementation, start mode, Tom St Denis */ #ifdef LTC_LRW_MODE /** Initialize the LRW context @param cipher The cipher desired, must be a 128-bit block cipher @param IV The index value, must be 128-bits @param key The cipher key @param keylen The length of the cipher key in octets @param tweak The tweak value (second key), must be 128-bits @param num_rounds The number of rounds for the cipher (0 == default) @param lrw [out] The LRW state @return CRYPT_OK on success. */ int lrw_start( int cipher, const unsigned char *IV, const unsigned char *key, int keylen, const unsigned char *tweak, int num_rounds, symmetric_LRW *lrw) { int err; #ifdef LTC_LRW_TABLES unsigned char B[16]; int x, y, z, t; #endif LTC_ARGCHK(IV != NULL); LTC_ARGCHK(key != NULL); LTC_ARGCHK(tweak != NULL); LTC_ARGCHK(lrw != NULL); #ifdef LTC_FAST if (16 % sizeof(LTC_FAST_TYPE)) { return CRYPT_INVALID_ARG; } #endif /* is cipher valid? */ if ((err = cipher_is_valid(cipher)) != CRYPT_OK) { return err; } if (cipher_descriptor[cipher].block_length != 16) { return CRYPT_INVALID_CIPHER; } /* schedule key */ if ((err = cipher_descriptor[cipher].setup(key, keylen, num_rounds, &lrw->key)) != CRYPT_OK) { return err; } lrw->cipher = cipher; /* copy the IV and tweak */ XMEMCPY(lrw->tweak, tweak, 16); #ifdef LTC_LRW_TABLES /* setup tables */ /* generate the first table as it has no shifting (from which we make the other tables) */ zeromem(B, 16); for (y = 0; y < 256; y++) { B[0] = y; gcm_gf_mult(tweak, B, &lrw->PC[0][y][0]); } /* now generate the rest of the tables based the previous table */ for (x = 1; x < 16; x++) { for (y = 0; y < 256; y++) { /* now shift it right by 8 bits */ t = lrw->PC[x-1][y][15]; for (z = 15; z > 0; z--) { lrw->PC[x][y][z] = lrw->PC[x-1][y][z-1]; } lrw->PC[x][y][0] = gcm_shift_table[t<<1]; lrw->PC[x][y][1] ^= gcm_shift_table[(t<<1)+1]; } } #endif /* generate first pad */ return lrw_setiv(IV, 16, lrw); } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */