view libtomcrypt/src/modes/lrw/lrw_start.c @ 1930:299f4f19ba19

Add /usr/sbin and /sbin to default root PATH When dropbear is used in a very restricted environment (such as in a initrd), the default user shell is often also very restricted and doesn't take care of setting the PATH so the user ends up with the PATH set by dropbear. Unfortunately, dropbear always sets "/usr/bin:/bin" as default PATH even for the root user which should have /usr/sbin and /sbin too. For a concrete instance of this problem, see the "Remote Unlocking" section in this tutorial: https://paxswill.com/blog/2013/11/04/encrypted-raspberry-pi/ It speaks of a bug in the initramfs script because it's written "blkid" instead of "/sbin/blkid"... this is just because the scripts from the initramfs do not expect to have a PATH without the sbin directories and because dropbear is not setting the PATH appropriately for the root user. I'm thus suggesting to use the attached patch to fix this misbehaviour (I did not test it, but it's easy enough). It might seem anecdotic but multiple Kali users have been bitten by this. From https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=903403
author Raphael Hertzog <hertzog@debian.org>
date Mon, 09 Jul 2018 16:27:53 +0200
parents 6dba84798cd5
children
line wrap: on
line source

/* LibTomCrypt, modular cryptographic library -- Tom St Denis
 *
 * LibTomCrypt is a library that provides various cryptographic
 * algorithms in a highly modular and flexible manner.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 */
#include "tomcrypt.h"

/**
   @file lrw_start.c
   LRW_MODE implementation, start mode, Tom St Denis
*/

#ifdef LTC_LRW_MODE

/**
  Initialize the LRW context
  @param cipher        The cipher desired, must be a 128-bit block cipher
  @param IV            The index value, must be 128-bits
  @param key           The cipher key
  @param keylen        The length of the cipher key in octets
  @param tweak         The tweak value (second key), must be 128-bits
  @param num_rounds    The number of rounds for the cipher (0 == default)
  @param lrw           [out] The LRW state
  @return CRYPT_OK on success.
*/
int lrw_start(               int   cipher,
              const unsigned char *IV,
              const unsigned char *key,       int keylen,
              const unsigned char *tweak,
                             int  num_rounds,
                   symmetric_LRW *lrw)
{
   int           err;
#ifdef LTC_LRW_TABLES
   unsigned char B[16];
   int           x, y, z, t;
#endif

   LTC_ARGCHK(IV    != NULL);
   LTC_ARGCHK(key   != NULL);
   LTC_ARGCHK(tweak != NULL);
   LTC_ARGCHK(lrw   != NULL);

#ifdef LTC_FAST
   if (16 % sizeof(LTC_FAST_TYPE)) {
      return CRYPT_INVALID_ARG;
   }
#endif

   /* is cipher valid? */
   if ((err = cipher_is_valid(cipher)) != CRYPT_OK) {
      return err;
   }
   if (cipher_descriptor[cipher].block_length != 16) {
      return CRYPT_INVALID_CIPHER;
   }

   /* schedule key */
   if ((err = cipher_descriptor[cipher].setup(key, keylen, num_rounds, &lrw->key)) != CRYPT_OK) {
      return err;
   }
   lrw->cipher = cipher;

   /* copy the IV and tweak */
   XMEMCPY(lrw->tweak, tweak, 16);

#ifdef LTC_LRW_TABLES
   /* setup tables */
   /* generate the first table as it has no shifting (from which we make the other tables) */
   zeromem(B, 16);
   for (y = 0; y < 256; y++) {
        B[0] = y;
        gcm_gf_mult(tweak, B, &lrw->PC[0][y][0]);
   }

   /* now generate the rest of the tables based the previous table */
   for (x = 1; x < 16; x++) {
      for (y = 0; y < 256; y++) {
         /* now shift it right by 8 bits */
         t = lrw->PC[x-1][y][15];
         for (z = 15; z > 0; z--) {
             lrw->PC[x][y][z] = lrw->PC[x-1][y][z-1];
         }
         lrw->PC[x][y][0]  = gcm_shift_table[t<<1];
         lrw->PC[x][y][1] ^= gcm_shift_table[(t<<1)+1];
      }
   }
#endif

   /* generate first pad */
   return lrw_setiv(IV, 16, lrw);
}


#endif
/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */