view libtomcrypt/src/stream/rc4/rc4_stream.c @ 1930:299f4f19ba19

Add /usr/sbin and /sbin to default root PATH When dropbear is used in a very restricted environment (such as in a initrd), the default user shell is often also very restricted and doesn't take care of setting the PATH so the user ends up with the PATH set by dropbear. Unfortunately, dropbear always sets "/usr/bin:/bin" as default PATH even for the root user which should have /usr/sbin and /sbin too. For a concrete instance of this problem, see the "Remote Unlocking" section in this tutorial: https://paxswill.com/blog/2013/11/04/encrypted-raspberry-pi/ It speaks of a bug in the initramfs script because it's written "blkid" instead of "/sbin/blkid"... this is just because the scripts from the initramfs do not expect to have a PATH without the sbin directories and because dropbear is not setting the PATH appropriately for the root user. I'm thus suggesting to use the attached patch to fix this misbehaviour (I did not test it, but it's easy enough). It might seem anecdotic but multiple Kali users have been bitten by this. From https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=903403
author Raphael Hertzog <hertzog@debian.org>
date Mon, 09 Jul 2018 16:27:53 +0200
parents 6dba84798cd5
children
line wrap: on
line source

/* LibTomCrypt, modular cryptographic library -- Tom St Denis
 *
 * LibTomCrypt is a library that provides various cryptographic
 * algorithms in a highly modular and flexible manner.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 */

#include "tomcrypt.h"

#ifdef LTC_RC4_STREAM

/**
   Initialize an RC4 context (only the key)
   @param st        [out] The destination of the RC4 state
   @param key       The secret key
   @param keylen    The length of the secret key (8 - 256 bytes)
   @return CRYPT_OK if successful
*/
int rc4_stream_setup(rc4_state *st, const unsigned char *key, unsigned long keylen)
{
   unsigned char tmp, *s;
   int x, y;
   unsigned long j;

   LTC_ARGCHK(st  != NULL);
   LTC_ARGCHK(key != NULL);
   LTC_ARGCHK(keylen >= 5); /* 40-2048 bits */

   s = st->buf;
   for (x = 0; x < 256; x++) {
      s[x] = x;
   }

   for (j = x = y = 0; x < 256; x++) {
      y = (y + s[x] + key[j++]) & 255;
      if (j == keylen) {
         j = 0;
      }
      tmp = s[x]; s[x] = s[y]; s[y] = tmp;
   }
   st->x = 0;
   st->y = 0;

   return CRYPT_OK;
}

/**
   Encrypt (or decrypt) bytes of ciphertext (or plaintext) with RC4
   @param st      The RC4 state
   @param in      The plaintext (or ciphertext)
   @param inlen   The length of the input (octets)
   @param out     [out] The ciphertext (or plaintext), length inlen
   @return CRYPT_OK if successful
*/
int rc4_stream_crypt(rc4_state *st, const unsigned char *in, unsigned long inlen, unsigned char *out)
{
   unsigned char x, y, *s, tmp;

   LTC_ARGCHK(st  != NULL);
   LTC_ARGCHK(in  != NULL);
   LTC_ARGCHK(out != NULL);

   x = st->x;
   y = st->y;
   s = st->buf;
   while (inlen--) {
      x = (x + 1) & 255;
      y = (y + s[x]) & 255;
      tmp = s[x]; s[x] = s[y]; s[y] = tmp;
      tmp = (s[x] + s[y]) & 255;
      *out++ = *in++ ^ s[tmp];
   }
   st->x = x;
   st->y = y;
   return CRYPT_OK;
}

/**
  Generate a stream of random bytes via RC4
  @param st      The RC420 state
  @param out     [out] The output buffer
  @param outlen  The output length
  @return CRYPT_OK on success
 */
int rc4_stream_keystream(rc4_state *st, unsigned char *out, unsigned long outlen)
{
   if (outlen == 0) return CRYPT_OK; /* nothing to do */
   LTC_ARGCHK(out != NULL);
   XMEMSET(out, 0, outlen);
   return rc4_stream_crypt(st, out, outlen, out);
}

/**
  Terminate and clear RC4 state
  @param st      The RC4 state
  @return CRYPT_OK on success
*/
int rc4_stream_done(rc4_state *st)
{
   LTC_ARGCHK(st != NULL);
   XMEMSET(st, 0, sizeof(rc4_state));
   return CRYPT_OK;
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */