Mercurial > dropbear
view libtommath/bn_mp_div.c @ 1930:299f4f19ba19
Add /usr/sbin and /sbin to default root PATH
When dropbear is used in a very restricted environment (such as in a
initrd), the default user shell is often also very restricted
and doesn't take care of setting the PATH so the user ends up
with the PATH set by dropbear. Unfortunately, dropbear always
sets "/usr/bin:/bin" as default PATH even for the root user
which should have /usr/sbin and /sbin too.
For a concrete instance of this problem, see the "Remote Unlocking"
section in this tutorial: https://paxswill.com/blog/2013/11/04/encrypted-raspberry-pi/
It speaks of a bug in the initramfs script because it's written "blkid"
instead of "/sbin/blkid"... this is just because the scripts from the
initramfs do not expect to have a PATH without the sbin directories and
because dropbear is not setting the PATH appropriately for the root user.
I'm thus suggesting to use the attached patch to fix this misbehaviour (I
did not test it, but it's easy enough). It might seem anecdotic but
multiple Kali users have been bitten by this.
From https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=903403
author | Raphael Hertzog <hertzog@debian.org> |
---|---|
date | Mon, 09 Jul 2018 16:27:53 +0200 |
parents | 1051e4eea25a |
children |
line wrap: on
line source
#include "tommath_private.h" #ifdef BN_MP_DIV_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ #ifdef BN_MP_DIV_SMALL /* slower bit-bang division... also smaller */ mp_err mp_div(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d) { mp_int ta, tb, tq, q; int n, n2; mp_err err; /* is divisor zero ? */ if (MP_IS_ZERO(b)) { return MP_VAL; } /* if a < b then q=0, r = a */ if (mp_cmp_mag(a, b) == MP_LT) { if (d != NULL) { err = mp_copy(a, d); } else { err = MP_OKAY; } if (c != NULL) { mp_zero(c); } return err; } /* init our temps */ if ((err = mp_init_multi(&ta, &tb, &tq, &q, NULL)) != MP_OKAY) { return err; } mp_set(&tq, 1uL); n = mp_count_bits(a) - mp_count_bits(b); if ((err = mp_abs(a, &ta)) != MP_OKAY) goto LBL_ERR; if ((err = mp_abs(b, &tb)) != MP_OKAY) goto LBL_ERR; if ((err = mp_mul_2d(&tb, n, &tb)) != MP_OKAY) goto LBL_ERR; if ((err = mp_mul_2d(&tq, n, &tq)) != MP_OKAY) goto LBL_ERR; while (n-- >= 0) { if (mp_cmp(&tb, &ta) != MP_GT) { if ((err = mp_sub(&ta, &tb, &ta)) != MP_OKAY) goto LBL_ERR; if ((err = mp_add(&q, &tq, &q)) != MP_OKAY) goto LBL_ERR; } if ((err = mp_div_2d(&tb, 1, &tb, NULL)) != MP_OKAY) goto LBL_ERR; if ((err = mp_div_2d(&tq, 1, &tq, NULL)) != MP_OKAY) goto LBL_ERR; } /* now q == quotient and ta == remainder */ n = a->sign; n2 = (a->sign == b->sign) ? MP_ZPOS : MP_NEG; if (c != NULL) { mp_exch(c, &q); c->sign = MP_IS_ZERO(c) ? MP_ZPOS : n2; } if (d != NULL) { mp_exch(d, &ta); d->sign = MP_IS_ZERO(d) ? MP_ZPOS : n; } LBL_ERR: mp_clear_multi(&ta, &tb, &tq, &q, NULL); return err; } #else /* integer signed division. * c*b + d == a [e.g. a/b, c=quotient, d=remainder] * HAC pp.598 Algorithm 14.20 * * Note that the description in HAC is horribly * incomplete. For example, it doesn't consider * the case where digits are removed from 'x' in * the inner loop. It also doesn't consider the * case that y has fewer than three digits, etc.. * * The overall algorithm is as described as * 14.20 from HAC but fixed to treat these cases. */ mp_err mp_div(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d) { mp_int q, x, y, t1, t2; int n, t, i, norm; mp_sign neg; mp_err err; /* is divisor zero ? */ if (MP_IS_ZERO(b)) { return MP_VAL; } /* if a < b then q=0, r = a */ if (mp_cmp_mag(a, b) == MP_LT) { if (d != NULL) { err = mp_copy(a, d); } else { err = MP_OKAY; } if (c != NULL) { mp_zero(c); } return err; } if ((err = mp_init_size(&q, a->used + 2)) != MP_OKAY) { return err; } q.used = a->used + 2; if ((err = mp_init(&t1)) != MP_OKAY) goto LBL_Q; if ((err = mp_init(&t2)) != MP_OKAY) goto LBL_T1; if ((err = mp_init_copy(&x, a)) != MP_OKAY) goto LBL_T2; if ((err = mp_init_copy(&y, b)) != MP_OKAY) goto LBL_X; /* fix the sign */ neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG; x.sign = y.sign = MP_ZPOS; /* normalize both x and y, ensure that y >= b/2, [b == 2**MP_DIGIT_BIT] */ norm = mp_count_bits(&y) % MP_DIGIT_BIT; if (norm < (MP_DIGIT_BIT - 1)) { norm = (MP_DIGIT_BIT - 1) - norm; if ((err = mp_mul_2d(&x, norm, &x)) != MP_OKAY) goto LBL_Y; if ((err = mp_mul_2d(&y, norm, &y)) != MP_OKAY) goto LBL_Y; } else { norm = 0; } /* note hac does 0 based, so if used==5 then its 0,1,2,3,4, e.g. use 4 */ n = x.used - 1; t = y.used - 1; /* while (x >= y*b**n-t) do { q[n-t] += 1; x -= y*b**{n-t} } */ /* y = y*b**{n-t} */ if ((err = mp_lshd(&y, n - t)) != MP_OKAY) goto LBL_Y; while (mp_cmp(&x, &y) != MP_LT) { ++(q.dp[n - t]); if ((err = mp_sub(&x, &y, &x)) != MP_OKAY) goto LBL_Y; } /* reset y by shifting it back down */ mp_rshd(&y, n - t); /* step 3. for i from n down to (t + 1) */ for (i = n; i >= (t + 1); i--) { if (i > x.used) { continue; } /* step 3.1 if xi == yt then set q{i-t-1} to b-1, * otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */ if (x.dp[i] == y.dp[t]) { q.dp[(i - t) - 1] = ((mp_digit)1 << (mp_digit)MP_DIGIT_BIT) - (mp_digit)1; } else { mp_word tmp; tmp = (mp_word)x.dp[i] << (mp_word)MP_DIGIT_BIT; tmp |= (mp_word)x.dp[i - 1]; tmp /= (mp_word)y.dp[t]; if (tmp > (mp_word)MP_MASK) { tmp = MP_MASK; } q.dp[(i - t) - 1] = (mp_digit)(tmp & (mp_word)MP_MASK); } /* while (q{i-t-1} * (yt * b + y{t-1})) > xi * b**2 + xi-1 * b + xi-2 do q{i-t-1} -= 1; */ q.dp[(i - t) - 1] = (q.dp[(i - t) - 1] + 1uL) & (mp_digit)MP_MASK; do { q.dp[(i - t) - 1] = (q.dp[(i - t) - 1] - 1uL) & (mp_digit)MP_MASK; /* find left hand */ mp_zero(&t1); t1.dp[0] = ((t - 1) < 0) ? 0u : y.dp[t - 1]; t1.dp[1] = y.dp[t]; t1.used = 2; if ((err = mp_mul_d(&t1, q.dp[(i - t) - 1], &t1)) != MP_OKAY) goto LBL_Y; /* find right hand */ t2.dp[0] = ((i - 2) < 0) ? 0u : x.dp[i - 2]; t2.dp[1] = x.dp[i - 1]; /* i >= 1 always holds */ t2.dp[2] = x.dp[i]; t2.used = 3; } while (mp_cmp_mag(&t1, &t2) == MP_GT); /* step 3.3 x = x - q{i-t-1} * y * b**{i-t-1} */ if ((err = mp_mul_d(&y, q.dp[(i - t) - 1], &t1)) != MP_OKAY) goto LBL_Y; if ((err = mp_lshd(&t1, (i - t) - 1)) != MP_OKAY) goto LBL_Y; if ((err = mp_sub(&x, &t1, &x)) != MP_OKAY) goto LBL_Y; /* if x < 0 then { x = x + y*b**{i-t-1}; q{i-t-1} -= 1; } */ if (x.sign == MP_NEG) { if ((err = mp_copy(&y, &t1)) != MP_OKAY) goto LBL_Y; if ((err = mp_lshd(&t1, (i - t) - 1)) != MP_OKAY) goto LBL_Y; if ((err = mp_add(&x, &t1, &x)) != MP_OKAY) goto LBL_Y; q.dp[(i - t) - 1] = (q.dp[(i - t) - 1] - 1uL) & MP_MASK; } } /* now q is the quotient and x is the remainder * [which we have to normalize] */ /* get sign before writing to c */ x.sign = (x.used == 0) ? MP_ZPOS : a->sign; if (c != NULL) { mp_clamp(&q); mp_exch(&q, c); c->sign = neg; } if (d != NULL) { if ((err = mp_div_2d(&x, norm, &x, NULL)) != MP_OKAY) goto LBL_Y; mp_exch(&x, d); } err = MP_OKAY; LBL_Y: mp_clear(&y); LBL_X: mp_clear(&x); LBL_T2: mp_clear(&t2); LBL_T1: mp_clear(&t1); LBL_Q: mp_clear(&q); return err; } #endif #endif