Mercurial > dropbear
view libtommath/bn_mp_mul_d.c @ 1930:299f4f19ba19
Add /usr/sbin and /sbin to default root PATH
When dropbear is used in a very restricted environment (such as in a
initrd), the default user shell is often also very restricted
and doesn't take care of setting the PATH so the user ends up
with the PATH set by dropbear. Unfortunately, dropbear always
sets "/usr/bin:/bin" as default PATH even for the root user
which should have /usr/sbin and /sbin too.
For a concrete instance of this problem, see the "Remote Unlocking"
section in this tutorial: https://paxswill.com/blog/2013/11/04/encrypted-raspberry-pi/
It speaks of a bug in the initramfs script because it's written "blkid"
instead of "/sbin/blkid"... this is just because the scripts from the
initramfs do not expect to have a PATH without the sbin directories and
because dropbear is not setting the PATH appropriately for the root user.
I'm thus suggesting to use the attached patch to fix this misbehaviour (I
did not test it, but it's easy enough). It might seem anecdotic but
multiple Kali users have been bitten by this.
From https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=903403
author | Raphael Hertzog <hertzog@debian.org> |
---|---|
date | Mon, 09 Jul 2018 16:27:53 +0200 |
parents | 1051e4eea25a |
children |
line wrap: on
line source
#include "tommath_private.h" #ifdef BN_MP_MUL_D_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* multiply by a digit */ mp_err mp_mul_d(const mp_int *a, mp_digit b, mp_int *c) { mp_digit u, *tmpa, *tmpc; mp_word r; mp_err err; int ix, olduse; /* make sure c is big enough to hold a*b */ if (c->alloc < (a->used + 1)) { if ((err = mp_grow(c, a->used + 1)) != MP_OKAY) { return err; } } /* get the original destinations used count */ olduse = c->used; /* set the sign */ c->sign = a->sign; /* alias for a->dp [source] */ tmpa = a->dp; /* alias for c->dp [dest] */ tmpc = c->dp; /* zero carry */ u = 0; /* compute columns */ for (ix = 0; ix < a->used; ix++) { /* compute product and carry sum for this term */ r = (mp_word)u + ((mp_word)*tmpa++ * (mp_word)b); /* mask off higher bits to get a single digit */ *tmpc++ = (mp_digit)(r & (mp_word)MP_MASK); /* send carry into next iteration */ u = (mp_digit)(r >> (mp_word)MP_DIGIT_BIT); } /* store final carry [if any] and increment ix offset */ *tmpc++ = u; ++ix; /* now zero digits above the top */ MP_ZERO_DIGITS(tmpc, olduse - ix); /* set used count */ c->used = a->used + 1; mp_clamp(c); return MP_OKAY; } #endif