view libtommath/bn_s_mp_karatsuba_mul.c @ 1930:299f4f19ba19

Add /usr/sbin and /sbin to default root PATH When dropbear is used in a very restricted environment (such as in a initrd), the default user shell is often also very restricted and doesn't take care of setting the PATH so the user ends up with the PATH set by dropbear. Unfortunately, dropbear always sets "/usr/bin:/bin" as default PATH even for the root user which should have /usr/sbin and /sbin too. For a concrete instance of this problem, see the "Remote Unlocking" section in this tutorial: https://paxswill.com/blog/2013/11/04/encrypted-raspberry-pi/ It speaks of a bug in the initramfs script because it's written "blkid" instead of "/sbin/blkid"... this is just because the scripts from the initramfs do not expect to have a PATH without the sbin directories and because dropbear is not setting the PATH appropriately for the root user. I'm thus suggesting to use the attached patch to fix this misbehaviour (I did not test it, but it's easy enough). It might seem anecdotic but multiple Kali users have been bitten by this. From https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=903403
author Raphael Hertzog <hertzog@debian.org>
date Mon, 09 Jul 2018 16:27:53 +0200
parents 1051e4eea25a
children
line wrap: on
line source

#include "tommath_private.h"
#ifdef BN_S_MP_KARATSUBA_MUL_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */

/* c = |a| * |b| using Karatsuba Multiplication using
 * three half size multiplications
 *
 * Let B represent the radix [e.g. 2**MP_DIGIT_BIT] and
 * let n represent half of the number of digits in
 * the min(a,b)
 *
 * a = a1 * B**n + a0
 * b = b1 * B**n + b0
 *
 * Then, a * b =>
   a1b1 * B**2n + ((a1 + a0)(b1 + b0) - (a0b0 + a1b1)) * B + a0b0
 *
 * Note that a1b1 and a0b0 are used twice and only need to be
 * computed once.  So in total three half size (half # of
 * digit) multiplications are performed, a0b0, a1b1 and
 * (a1+b1)(a0+b0)
 *
 * Note that a multiplication of half the digits requires
 * 1/4th the number of single precision multiplications so in
 * total after one call 25% of the single precision multiplications
 * are saved.  Note also that the call to mp_mul can end up back
 * in this function if the a0, a1, b0, or b1 are above the threshold.
 * This is known as divide-and-conquer and leads to the famous
 * O(N**lg(3)) or O(N**1.584) work which is asymptopically lower than
 * the standard O(N**2) that the baseline/comba methods use.
 * Generally though the overhead of this method doesn't pay off
 * until a certain size (N ~ 80) is reached.
 */
mp_err s_mp_karatsuba_mul(const mp_int *a, const mp_int *b, mp_int *c)
{
   mp_int  x0, x1, y0, y1, t1, x0y0, x1y1;
   int     B;
   mp_err  err = MP_MEM; /* default the return code to an error */

   /* min # of digits */
   B = MP_MIN(a->used, b->used);

   /* now divide in two */
   B = B >> 1;

   /* init copy all the temps */
   if (mp_init_size(&x0, B) != MP_OKAY) {
      goto LBL_ERR;
   }
   if (mp_init_size(&x1, a->used - B) != MP_OKAY) {
      goto X0;
   }
   if (mp_init_size(&y0, B) != MP_OKAY) {
      goto X1;
   }
   if (mp_init_size(&y1, b->used - B) != MP_OKAY) {
      goto Y0;
   }

   /* init temps */
   if (mp_init_size(&t1, B * 2) != MP_OKAY) {
      goto Y1;
   }
   if (mp_init_size(&x0y0, B * 2) != MP_OKAY) {
      goto T1;
   }
   if (mp_init_size(&x1y1, B * 2) != MP_OKAY) {
      goto X0Y0;
   }

   /* now shift the digits */
   x0.used = y0.used = B;
   x1.used = a->used - B;
   y1.used = b->used - B;

   {
      int x;
      mp_digit *tmpa, *tmpb, *tmpx, *tmpy;

      /* we copy the digits directly instead of using higher level functions
       * since we also need to shift the digits
       */
      tmpa = a->dp;
      tmpb = b->dp;

      tmpx = x0.dp;
      tmpy = y0.dp;
      for (x = 0; x < B; x++) {
         *tmpx++ = *tmpa++;
         *tmpy++ = *tmpb++;
      }

      tmpx = x1.dp;
      for (x = B; x < a->used; x++) {
         *tmpx++ = *tmpa++;
      }

      tmpy = y1.dp;
      for (x = B; x < b->used; x++) {
         *tmpy++ = *tmpb++;
      }
   }

   /* only need to clamp the lower words since by definition the
    * upper words x1/y1 must have a known number of digits
    */
   mp_clamp(&x0);
   mp_clamp(&y0);

   /* now calc the products x0y0 and x1y1 */
   /* after this x0 is no longer required, free temp [x0==t2]! */
   if (mp_mul(&x0, &y0, &x0y0) != MP_OKAY) {
      goto X1Y1;          /* x0y0 = x0*y0 */
   }
   if (mp_mul(&x1, &y1, &x1y1) != MP_OKAY) {
      goto X1Y1;          /* x1y1 = x1*y1 */
   }

   /* now calc x1+x0 and y1+y0 */
   if (s_mp_add(&x1, &x0, &t1) != MP_OKAY) {
      goto X1Y1;          /* t1 = x1 - x0 */
   }
   if (s_mp_add(&y1, &y0, &x0) != MP_OKAY) {
      goto X1Y1;          /* t2 = y1 - y0 */
   }
   if (mp_mul(&t1, &x0, &t1) != MP_OKAY) {
      goto X1Y1;          /* t1 = (x1 + x0) * (y1 + y0) */
   }

   /* add x0y0 */
   if (mp_add(&x0y0, &x1y1, &x0) != MP_OKAY) {
      goto X1Y1;          /* t2 = x0y0 + x1y1 */
   }
   if (s_mp_sub(&t1, &x0, &t1) != MP_OKAY) {
      goto X1Y1;          /* t1 = (x1+x0)*(y1+y0) - (x1y1 + x0y0) */
   }

   /* shift by B */
   if (mp_lshd(&t1, B) != MP_OKAY) {
      goto X1Y1;          /* t1 = (x0y0 + x1y1 - (x1-x0)*(y1-y0))<<B */
   }
   if (mp_lshd(&x1y1, B * 2) != MP_OKAY) {
      goto X1Y1;          /* x1y1 = x1y1 << 2*B */
   }

   if (mp_add(&x0y0, &t1, &t1) != MP_OKAY) {
      goto X1Y1;          /* t1 = x0y0 + t1 */
   }
   if (mp_add(&t1, &x1y1, c) != MP_OKAY) {
      goto X1Y1;          /* t1 = x0y0 + t1 + x1y1 */
   }

   /* Algorithm succeeded set the return code to MP_OKAY */
   err = MP_OKAY;

X1Y1:
   mp_clear(&x1y1);
X0Y0:
   mp_clear(&x0y0);
T1:
   mp_clear(&t1);
Y1:
   mp_clear(&y1);
Y0:
   mp_clear(&y0);
X1:
   mp_clear(&x1);
X0:
   mp_clear(&x0);
LBL_ERR:
   return err;
}
#endif