Mercurial > dropbear
view fuzz/fuzz-wrapfd.c @ 1861:2b3a8026a6ce
Add re-exec for server
This allows ASLR to re-randomize the address
space for every connection, preventing some
vulnerabilities from being exploitable by
repeated probing.
Overhead (memory and time) is yet to be confirmed.
At present this is only enabled on Linux. Other BSD platforms
with fexecve() would probably also work though have not been tested.
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Sun, 30 Jan 2022 10:14:56 +0800 |
parents | 1b160ed94749 |
children |
line wrap: on
line source
#define FUZZ_SKIP_WRAP 1 #include "includes.h" #include "fuzz-wrapfd.h" #include "dbutil.h" #include "fuzz.h" #define IOWRAP_MAXFD (FD_SETSIZE-1) static const int MAX_RANDOM_IN = 50000; static const double CHANCE_CLOSE = 1.0 / 600; static const double CHANCE_INTR = 1.0 / 900; static const double CHANCE_READ1 = 0.96; static const double CHANCE_READ2 = 0.5; static const double CHANCE_WRITE1 = 0.96; static const double CHANCE_WRITE2 = 0.5; struct fdwrap { enum wrapfd_mode mode; int closein; int closeout; }; static struct fdwrap wrap_fds[IOWRAP_MAXFD+1] = {{UNUSED, 0, 0}}; static int wrapfd_maxfd = -1; static unsigned short rand_state[3]; static buffer *input_buf; static int devnull_fd = -1; static void wrapfd_remove(int fd); void wrapfd_setup(buffer *buf) { TRACE(("wrapfd_setup")) // clean old ones int i; for (i = 0; i <= wrapfd_maxfd; i++) { if (wrap_fds[i].mode != UNUSED) { wrapfd_remove(i); } } wrapfd_maxfd = -1; memset(rand_state, 0x0, sizeof(rand_state)); wrapfd_setseed(50); input_buf = buf; } void wrapfd_setseed(uint32_t seed) { memcpy(rand_state, &seed, sizeof(seed)); nrand48(rand_state); } int wrapfd_new_fuzzinput() { if (devnull_fd == -1) { devnull_fd = open("/dev/null", O_RDONLY); assert(devnull_fd != -1); } int fd = dup(devnull_fd); assert(fd != -1); assert(wrap_fds[fd].mode == UNUSED); wrap_fds[fd].mode = COMMONBUF; wrap_fds[fd].closein = 0; wrap_fds[fd].closeout = 0; wrapfd_maxfd = MAX(fd, wrapfd_maxfd); return fd; } int wrapfd_new_dummy() { if (devnull_fd == -1) { devnull_fd = open("/dev/null", O_RDONLY); assert(devnull_fd != -1); } int fd = dup(devnull_fd); if (fd == -1) { return -1; } if (fd > IOWRAP_MAXFD) { close(fd); errno = EMFILE; return -1; } assert(wrap_fds[fd].mode == UNUSED); wrap_fds[fd].mode = DUMMY; wrap_fds[fd].closein = 0; wrap_fds[fd].closeout = 0; wrapfd_maxfd = MAX(fd, wrapfd_maxfd); return fd; } static void wrapfd_remove(int fd) { TRACE(("wrapfd_remove %d", fd)) assert(fd >= 0); assert(fd <= IOWRAP_MAXFD); assert(wrap_fds[fd].mode != UNUSED); wrap_fds[fd].mode = UNUSED; close(fd); } int wrapfd_close(int fd) { if (fd >= 0 && fd <= IOWRAP_MAXFD && wrap_fds[fd].mode != UNUSED) { wrapfd_remove(fd); return 0; } else { return close(fd); } } int wrapfd_read(int fd, void *out, size_t count) { size_t maxread; if (!fuzz.wrapfds) { return read(fd, out, count); } if (fd < 0 || fd > IOWRAP_MAXFD || wrap_fds[fd].mode == UNUSED) { /* XXX - assertion failure? */ TRACE(("Bad read descriptor %d\n", fd)) errno = EBADF; return -1; } assert(count != 0); if (wrap_fds[fd].closein || erand48(rand_state) < CHANCE_CLOSE) { wrap_fds[fd].closein = 1; errno = ECONNRESET; return -1; } if (erand48(rand_state) < CHANCE_INTR) { errno = EINTR; return -1; } if (input_buf && wrap_fds[fd].mode == COMMONBUF) { maxread = MIN(input_buf->len - input_buf->pos, count); /* returns 0 if buf is EOF, as intended */ if (maxread > 0) { maxread = nrand48(rand_state) % maxread + 1; } memcpy(out, buf_getptr(input_buf, maxread), maxread); buf_incrpos(input_buf, maxread); return maxread; } // return fixed output, of random length maxread = MIN(MAX_RANDOM_IN, count); maxread = nrand48(rand_state) % maxread + 1; memset(out, 0xef, maxread); return maxread; } int wrapfd_write(int fd, const void* in, size_t count) { unsigned const volatile char* volin = in; unsigned int i; if (!fuzz.wrapfds) { return write(fd, in, count); } if (fd < 0 || fd > IOWRAP_MAXFD || wrap_fds[fd].mode == UNUSED) { /* XXX - assertion failure? */ TRACE(("Bad read descriptor %d\n", fd)) errno = EBADF; return -1; } assert(count != 0); /* force read to exercise sanitisers */ for (i = 0; i < count; i++) { (void)volin[i]; } if (wrap_fds[fd].closeout || erand48(rand_state) < CHANCE_CLOSE) { wrap_fds[fd].closeout = 1; errno = ECONNRESET; return -1; } if (erand48(rand_state) < CHANCE_INTR) { errno = EINTR; return -1; } return nrand48(rand_state) % (count+1); } int wrapfd_select(int nfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, struct timeval *timeout) { int i, nset, sel; int ret = 0; int fdlist[IOWRAP_MAXFD+1]; if (!fuzz.wrapfds) { return select(nfds, readfds, writefds, exceptfds, timeout); } assert(nfds <= IOWRAP_MAXFD+1); if (erand48(rand_state) < CHANCE_INTR) { errno = EINTR; return -1; } /* read */ if (readfds != NULL && erand48(rand_state) < CHANCE_READ1) { for (i = 0, nset = 0; i < nfds; i++) { if (FD_ISSET(i, readfds)) { assert(wrap_fds[i].mode != UNUSED); fdlist[nset] = i; nset++; } } DROPBEAR_FD_ZERO(readfds); if (nset > 0) { /* set one */ sel = fdlist[nrand48(rand_state) % nset]; FD_SET(sel, readfds); ret++; if (erand48(rand_state) < CHANCE_READ2) { sel = fdlist[nrand48(rand_state) % nset]; if (!FD_ISSET(sel, readfds)) { FD_SET(sel, readfds); ret++; } } } } /* write */ if (writefds != NULL && erand48(rand_state) < CHANCE_WRITE1) { for (i = 0, nset = 0; i < nfds; i++) { if (FD_ISSET(i, writefds)) { assert(wrap_fds[i].mode != UNUSED); fdlist[nset] = i; nset++; } } DROPBEAR_FD_ZERO(writefds); /* set one */ if (nset > 0) { sel = fdlist[nrand48(rand_state) % nset]; FD_SET(sel, writefds); ret++; if (erand48(rand_state) < CHANCE_WRITE2) { sel = fdlist[nrand48(rand_state) % nset]; if (!FD_ISSET(sel, writefds)) { FD_SET(sel, writefds); ret++; } } } } return ret; } int fuzz_kill(pid_t pid, int sig) { if (fuzz.fuzzing) { TRACE(("fuzz_kill ignoring pid %d signal %d", (pid), sig)) if (sig >= 0) { return 0; } else { errno = EINVAL; return -1; } } return kill(pid, sig); }