view libtomcrypt/src/hashes/chc/chc.c @ 1861:2b3a8026a6ce

Add re-exec for server This allows ASLR to re-randomize the address space for every connection, preventing some vulnerabilities from being exploitable by repeated probing. Overhead (memory and time) is yet to be confirmed. At present this is only enabled on Linux. Other BSD platforms with fexecve() would probably also work though have not been tested.
author Matt Johnston <matt@ucc.asn.au>
date Sun, 30 Jan 2022 10:14:56 +0800
parents 6dba84798cd5
children
line wrap: on
line source

/* LibTomCrypt, modular cryptographic library -- Tom St Denis
 *
 * LibTomCrypt is a library that provides various cryptographic
 * algorithms in a highly modular and flexible manner.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 */

#include "tomcrypt.h"

/**
  @file chc.c
  CHC support. (Tom St Denis)
*/

#ifdef LTC_CHC_HASH

#define UNDEFED_HASH  -17

/* chc settings */
static int            cipher_idx=UNDEFED_HASH,        /* which cipher */
                      cipher_blocksize;               /* blocksize of cipher */


const struct ltc_hash_descriptor chc_desc = {
   "chc_hash", 12, 0, 0, { 0 }, 0,
   &chc_init,
   &chc_process,
   &chc_done,
   &chc_test,
   NULL
};

/**
  Initialize the CHC state with a given cipher
  @param cipher  The index of the cipher you wish to bind
  @return CRYPT_OK if successful
*/
int chc_register(int cipher)
{
   int err, kl, idx;

   if ((err = cipher_is_valid(cipher)) != CRYPT_OK) {
      return err;
   }

   /* will it be valid? */
   kl = cipher_descriptor[cipher].block_length;

   /* must be >64 bit block */
   if (kl <= 8) {
      return CRYPT_INVALID_CIPHER;
   }

   /* can we use the ideal keysize? */
   if ((err = cipher_descriptor[cipher].keysize(&kl)) != CRYPT_OK) {
      return err;
   }
   /* we require that key size == block size be a valid choice */
   if (kl != cipher_descriptor[cipher].block_length) {
      return CRYPT_INVALID_CIPHER;
   }

   /* determine if chc_hash has been register_hash'ed already */
   if ((err = hash_is_valid(idx = find_hash("chc_hash"))) != CRYPT_OK) {
      return err;
   }

   /* store into descriptor */
   hash_descriptor[idx].hashsize  =
   hash_descriptor[idx].blocksize = cipher_descriptor[cipher].block_length;

   /* store the idx and block size */
   cipher_idx       = cipher;
   cipher_blocksize = cipher_descriptor[cipher].block_length;
   return CRYPT_OK;
}

/**
   Initialize the hash state
   @param md   The hash state you wish to initialize
   @return CRYPT_OK if successful
*/
int chc_init(hash_state *md)
{
   symmetric_key *key;
   unsigned char  buf[MAXBLOCKSIZE];
   int            err;

   LTC_ARGCHK(md != NULL);

   /* is the cipher valid? */
   if ((err = cipher_is_valid(cipher_idx)) != CRYPT_OK) {
      return err;
   }

   if (cipher_blocksize != cipher_descriptor[cipher_idx].block_length) {
      return CRYPT_INVALID_CIPHER;
   }

   if ((key = XMALLOC(sizeof(*key))) == NULL) {
      return CRYPT_MEM;
   }

   /* zero key and what not */
   zeromem(buf, cipher_blocksize);
   if ((err = cipher_descriptor[cipher_idx].setup(buf, cipher_blocksize, 0, key)) != CRYPT_OK) {
      XFREE(key);
      return err;
   }

   /* encrypt zero block */
   cipher_descriptor[cipher_idx].ecb_encrypt(buf, md->chc.state, key);

   /* zero other members */
   md->chc.length = 0;
   md->chc.curlen = 0;
   zeromem(md->chc.buf, sizeof(md->chc.buf));
   XFREE(key);
   return CRYPT_OK;
}

/*
   key    <= state
   T0,T1  <= block
   T0     <= encrypt T0
   state  <= state xor T0 xor T1
*/
static int chc_compress(hash_state *md, unsigned char *buf)
{
   unsigned char  T[2][MAXBLOCKSIZE];
   symmetric_key *key;
   int            err, x;

   if ((key = XMALLOC(sizeof(*key))) == NULL) {
      return CRYPT_MEM;
   }
   if ((err = cipher_descriptor[cipher_idx].setup(md->chc.state, cipher_blocksize, 0, key)) != CRYPT_OK) {
      XFREE(key);
      return err;
   }
   XMEMCPY(T[1], buf, cipher_blocksize);
   cipher_descriptor[cipher_idx].ecb_encrypt(buf, T[0], key);
   for (x = 0; x < cipher_blocksize; x++) {
       md->chc.state[x] ^= T[0][x] ^ T[1][x];
   }
#ifdef LTC_CLEAN_STACK
   zeromem(T, sizeof(T));
   zeromem(key, sizeof(*key));
#endif
   XFREE(key);
   return CRYPT_OK;
}

/**
   Function for processing blocks
   @param md   The hash state
   @param buf  The data to hash
   @param len  The length of the data (octets)
   @return CRYPT_OK if successful
*/
static int _chc_process(hash_state * md, const unsigned char *buf, unsigned long len);
static HASH_PROCESS(_chc_process, chc_compress, chc, (unsigned long)cipher_blocksize)

/**
   Process a block of memory though the hash
   @param md   The hash state
   @param in   The data to hash
   @param inlen  The length of the data (octets)
   @return CRYPT_OK if successful
*/
int chc_process(hash_state * md, const unsigned char *in, unsigned long inlen)
{
   int err;

   LTC_ARGCHK(md   != NULL);
   LTC_ARGCHK(in  != NULL);

   /* is the cipher valid? */
   if ((err = cipher_is_valid(cipher_idx)) != CRYPT_OK) {
      return err;
   }
   if (cipher_blocksize != cipher_descriptor[cipher_idx].block_length) {
      return CRYPT_INVALID_CIPHER;
   }

   return _chc_process(md, in, inlen);
}

/**
   Terminate the hash to get the digest
   @param md   The hash state
   @param out [out] The destination of the hash (length of the block size of the block cipher)
   @return CRYPT_OK if successful
*/
int chc_done(hash_state *md, unsigned char *out)
{
    int err;

    LTC_ARGCHK(md   != NULL);
    LTC_ARGCHK(out  != NULL);

    /* is the cipher valid? */
    if ((err = cipher_is_valid(cipher_idx)) != CRYPT_OK) {
       return err;
    }
    if (cipher_blocksize != cipher_descriptor[cipher_idx].block_length) {
       return CRYPT_INVALID_CIPHER;
    }

    if (md->chc.curlen >= sizeof(md->chc.buf)) {
       return CRYPT_INVALID_ARG;
    }

    /* increase the length of the message */
    md->chc.length += md->chc.curlen * 8;

    /* append the '1' bit */
    md->chc.buf[md->chc.curlen++] = (unsigned char)0x80;

    /* if the length is currently above l-8 bytes we append zeros
     * then compress.  Then we can fall back to padding zeros and length
     * encoding like normal.
     */
    if (md->chc.curlen > (unsigned long)(cipher_blocksize - 8)) {
        while (md->chc.curlen < (unsigned long)cipher_blocksize) {
            md->chc.buf[md->chc.curlen++] = (unsigned char)0;
        }
        chc_compress(md, md->chc.buf);
        md->chc.curlen = 0;
    }

    /* pad upto l-8 bytes of zeroes */
    while (md->chc.curlen < (unsigned long)(cipher_blocksize - 8)) {
        md->chc.buf[md->chc.curlen++] = (unsigned char)0;
    }

    /* store length */
    STORE64L(md->chc.length, md->chc.buf+(cipher_blocksize-8));
    chc_compress(md, md->chc.buf);

    /* copy output */
    XMEMCPY(out, md->chc.state, cipher_blocksize);

#ifdef LTC_CLEAN_STACK
    zeromem(md, sizeof(hash_state));
#endif
    return CRYPT_OK;
}

/**
  Self-test the hash
  @return CRYPT_OK if successful, CRYPT_NOP if self-tests have been disabled
*/
int chc_test(void)
{
#ifndef LTC_TEST
   return CRYPT_NOP;
#else
   static const struct {
      unsigned char *msg,
                     hash[MAXBLOCKSIZE];
      int            len;
   } tests[] = {
{
   (unsigned char *)"hello world",
   { 0xcf, 0x57, 0x9d, 0xc3, 0x0a, 0x0e, 0xea, 0x61,
     0x0d, 0x54, 0x47, 0xc4, 0x3c, 0x06, 0xf5, 0x4e },
   16
}
};
   int i, oldhashidx, idx;
   unsigned char tmp[MAXBLOCKSIZE];
   hash_state md;

   /* AES can be under rijndael or aes... try to find it */
   if ((idx = find_cipher("aes")) == -1) {
      if ((idx = find_cipher("rijndael")) == -1) {
         return CRYPT_NOP;
      }
   }
   oldhashidx = cipher_idx;
   chc_register(idx);

   for (i = 0; i < (int)(sizeof(tests)/sizeof(tests[0])); i++) {
       chc_init(&md);
       chc_process(&md, tests[i].msg, strlen((char *)tests[i].msg));
       chc_done(&md, tmp);
       if (compare_testvector(tmp, tests[i].len, tests[i].hash, tests[i].len, "CHC", i)) {
          return CRYPT_FAIL_TESTVECTOR;
       }
   }
   if (oldhashidx != UNDEFED_HASH) {
      chc_register(oldhashidx);
   }

   return CRYPT_OK;
#endif
}

#endif

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */