Mercurial > dropbear
view libtomcrypt/src/math/tfm_desc.c @ 1861:2b3a8026a6ce
Add re-exec for server
This allows ASLR to re-randomize the address
space for every connection, preventing some
vulnerabilities from being exploitable by
repeated probing.
Overhead (memory and time) is yet to be confirmed.
At present this is only enabled on Linux. Other BSD platforms
with fexecve() would probably also work though have not been tested.
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Sun, 30 Jan 2022 10:14:56 +0800 |
parents | 6dba84798cd5 |
children |
line wrap: on
line source
/* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. */ #define DESC_DEF_ONLY #include "tomcrypt.h" #ifdef TFM_DESC #include <tfm.h> static const struct { int tfm_code, ltc_code; } tfm_to_ltc_codes[] = { { FP_OKAY , CRYPT_OK}, { FP_MEM , CRYPT_MEM}, { FP_VAL , CRYPT_INVALID_ARG}, }; /** Convert a tfm error to a LTC error (Possibly the most powerful function ever! Oh wait... no) @param err The error to convert @return The equivalent LTC error code or CRYPT_ERROR if none found */ static int tfm_to_ltc_error(int err) { int x; for (x = 0; x < (int)(sizeof(tfm_to_ltc_codes)/sizeof(tfm_to_ltc_codes[0])); x++) { if (err == tfm_to_ltc_codes[x].tfm_code) { return tfm_to_ltc_codes[x].ltc_code; } } return CRYPT_ERROR; } static int init(void **a) { LTC_ARGCHK(a != NULL); *a = XCALLOC(1, sizeof(fp_int)); if (*a == NULL) { return CRYPT_MEM; } fp_init(*a); return CRYPT_OK; } static void deinit(void *a) { LTC_ARGCHKVD(a != NULL); XFREE(a); } static int neg(void *a, void *b) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); fp_neg(((fp_int*)a), ((fp_int*)b)); return CRYPT_OK; } static int copy(void *a, void *b) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); fp_copy(a, b); return CRYPT_OK; } static int init_copy(void **a, void *b) { if (init(a) != CRYPT_OK) { return CRYPT_MEM; } return copy(b, *a); } /* ---- trivial ---- */ static int set_int(void *a, ltc_mp_digit b) { LTC_ARGCHK(a != NULL); fp_set(a, b); return CRYPT_OK; } static unsigned long get_int(void *a) { fp_int *A; LTC_ARGCHK(a != NULL); A = a; return A->used > 0 ? A->dp[0] : 0; } static ltc_mp_digit get_digit(void *a, int n) { fp_int *A; LTC_ARGCHK(a != NULL); A = a; return (n >= A->used || n < 0) ? 0 : A->dp[n]; } static int get_digit_count(void *a) { fp_int *A; LTC_ARGCHK(a != NULL); A = a; return A->used; } static int compare(void *a, void *b) { int ret; LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); ret = fp_cmp(a, b); switch (ret) { case FP_LT: return LTC_MP_LT; case FP_EQ: return LTC_MP_EQ; case FP_GT: return LTC_MP_GT; } return 0; } static int compare_d(void *a, ltc_mp_digit b) { int ret; LTC_ARGCHK(a != NULL); ret = fp_cmp_d(a, b); switch (ret) { case FP_LT: return LTC_MP_LT; case FP_EQ: return LTC_MP_EQ; case FP_GT: return LTC_MP_GT; } return 0; } static int count_bits(void *a) { LTC_ARGCHK(a != NULL); return fp_count_bits(a); } static int count_lsb_bits(void *a) { LTC_ARGCHK(a != NULL); return fp_cnt_lsb(a); } static int twoexpt(void *a, int n) { LTC_ARGCHK(a != NULL); fp_2expt(a, n); return CRYPT_OK; } /* ---- conversions ---- */ /* read ascii string */ static int read_radix(void *a, const char *b, int radix) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); return tfm_to_ltc_error(fp_read_radix(a, (char *)b, radix)); } /* write one */ static int write_radix(void *a, char *b, int radix) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); return tfm_to_ltc_error(fp_toradix(a, b, radix)); } /* get size as unsigned char string */ static unsigned long unsigned_size(void *a) { LTC_ARGCHK(a != NULL); return fp_unsigned_bin_size(a); } /* store */ static int unsigned_write(void *a, unsigned char *b) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); fp_to_unsigned_bin(a, b); return CRYPT_OK; } /* read */ static int unsigned_read(void *a, unsigned char *b, unsigned long len) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); fp_read_unsigned_bin(a, b, len); return CRYPT_OK; } /* add */ static int add(void *a, void *b, void *c) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); LTC_ARGCHK(c != NULL); fp_add(a, b, c); return CRYPT_OK; } static int addi(void *a, ltc_mp_digit b, void *c) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(c != NULL); fp_add_d(a, b, c); return CRYPT_OK; } /* sub */ static int sub(void *a, void *b, void *c) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); LTC_ARGCHK(c != NULL); fp_sub(a, b, c); return CRYPT_OK; } static int subi(void *a, ltc_mp_digit b, void *c) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(c != NULL); fp_sub_d(a, b, c); return CRYPT_OK; } /* mul */ static int mul(void *a, void *b, void *c) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); LTC_ARGCHK(c != NULL); fp_mul(a, b, c); return CRYPT_OK; } static int muli(void *a, ltc_mp_digit b, void *c) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(c != NULL); fp_mul_d(a, b, c); return CRYPT_OK; } /* sqr */ static int sqr(void *a, void *b) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); fp_sqr(a, b); return CRYPT_OK; } /* div */ static int divide(void *a, void *b, void *c, void *d) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); return tfm_to_ltc_error(fp_div(a, b, c, d)); } static int div_2(void *a, void *b) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); fp_div_2(a, b); return CRYPT_OK; } /* modi */ static int modi(void *a, ltc_mp_digit b, ltc_mp_digit *c) { fp_digit tmp; int err; LTC_ARGCHK(a != NULL); LTC_ARGCHK(c != NULL); if ((err = tfm_to_ltc_error(fp_mod_d(a, b, &tmp))) != CRYPT_OK) { return err; } *c = tmp; return CRYPT_OK; } /* gcd */ static int gcd(void *a, void *b, void *c) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); LTC_ARGCHK(c != NULL); fp_gcd(a, b, c); return CRYPT_OK; } /* lcm */ static int lcm(void *a, void *b, void *c) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); LTC_ARGCHK(c != NULL); fp_lcm(a, b, c); return CRYPT_OK; } static int addmod(void *a, void *b, void *c, void *d) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); LTC_ARGCHK(c != NULL); LTC_ARGCHK(d != NULL); return tfm_to_ltc_error(fp_addmod(a,b,c,d)); } static int submod(void *a, void *b, void *c, void *d) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); LTC_ARGCHK(c != NULL); LTC_ARGCHK(d != NULL); return tfm_to_ltc_error(fp_submod(a,b,c,d)); } static int mulmod(void *a, void *b, void *c, void *d) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); LTC_ARGCHK(c != NULL); LTC_ARGCHK(d != NULL); return tfm_to_ltc_error(fp_mulmod(a,b,c,d)); } static int sqrmod(void *a, void *b, void *c) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); LTC_ARGCHK(c != NULL); return tfm_to_ltc_error(fp_sqrmod(a,b,c)); } /* invmod */ static int invmod(void *a, void *b, void *c) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); LTC_ARGCHK(c != NULL); return tfm_to_ltc_error(fp_invmod(a, b, c)); } /* setup */ static int montgomery_setup(void *a, void **b) { int err; LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); *b = XCALLOC(1, sizeof(fp_digit)); if (*b == NULL) { return CRYPT_MEM; } if ((err = tfm_to_ltc_error(fp_montgomery_setup(a, (fp_digit *)*b))) != CRYPT_OK) { XFREE(*b); } return err; } /* get normalization value */ static int montgomery_normalization(void *a, void *b) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); fp_montgomery_calc_normalization(a, b); return CRYPT_OK; } /* reduce */ static int montgomery_reduce(void *a, void *b, void *c) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); LTC_ARGCHK(c != NULL); fp_montgomery_reduce(a, b, *((fp_digit *)c)); return CRYPT_OK; } /* clean up */ static void montgomery_deinit(void *a) { XFREE(a); } static int exptmod(void *a, void *b, void *c, void *d) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); LTC_ARGCHK(c != NULL); LTC_ARGCHK(d != NULL); return tfm_to_ltc_error(fp_exptmod(a,b,c,d)); } static int isprime(void *a, int b, int *c) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(c != NULL); if (b == 0) { b = LTC_MILLER_RABIN_REPS; } /* if */ *c = (fp_isprime_ex(a, b) == FP_YES) ? LTC_MP_YES : LTC_MP_NO; return CRYPT_OK; } #if defined(LTC_MECC) && defined(LTC_MECC_ACCEL) static int tfm_ecc_projective_dbl_point(ecc_point *P, ecc_point *R, void *modulus, void *Mp) { fp_int t1, t2; fp_digit mp; LTC_ARGCHK(P != NULL); LTC_ARGCHK(R != NULL); LTC_ARGCHK(modulus != NULL); LTC_ARGCHK(Mp != NULL); mp = *((fp_digit*)Mp); fp_init(&t1); fp_init(&t2); if (P != R) { fp_copy(P->x, R->x); fp_copy(P->y, R->y); fp_copy(P->z, R->z); } /* t1 = Z * Z */ fp_sqr(R->z, &t1); fp_montgomery_reduce(&t1, modulus, mp); /* Z = Y * Z */ fp_mul(R->z, R->y, R->z); fp_montgomery_reduce(R->z, modulus, mp); /* Z = 2Z */ fp_add(R->z, R->z, R->z); if (fp_cmp(R->z, modulus) != FP_LT) { fp_sub(R->z, modulus, R->z); } /* &t2 = X - T1 */ fp_sub(R->x, &t1, &t2); if (fp_cmp_d(&t2, 0) == FP_LT) { fp_add(&t2, modulus, &t2); } /* T1 = X + T1 */ fp_add(&t1, R->x, &t1); if (fp_cmp(&t1, modulus) != FP_LT) { fp_sub(&t1, modulus, &t1); } /* T2 = T1 * T2 */ fp_mul(&t1, &t2, &t2); fp_montgomery_reduce(&t2, modulus, mp); /* T1 = 2T2 */ fp_add(&t2, &t2, &t1); if (fp_cmp(&t1, modulus) != FP_LT) { fp_sub(&t1, modulus, &t1); } /* T1 = T1 + T2 */ fp_add(&t1, &t2, &t1); if (fp_cmp(&t1, modulus) != FP_LT) { fp_sub(&t1, modulus, &t1); } /* Y = 2Y */ fp_add(R->y, R->y, R->y); if (fp_cmp(R->y, modulus) != FP_LT) { fp_sub(R->y, modulus, R->y); } /* Y = Y * Y */ fp_sqr(R->y, R->y); fp_montgomery_reduce(R->y, modulus, mp); /* T2 = Y * Y */ fp_sqr(R->y, &t2); fp_montgomery_reduce(&t2, modulus, mp); /* T2 = T2/2 */ if (fp_isodd(&t2)) { fp_add(&t2, modulus, &t2); } fp_div_2(&t2, &t2); /* Y = Y * X */ fp_mul(R->y, R->x, R->y); fp_montgomery_reduce(R->y, modulus, mp); /* X = T1 * T1 */ fp_sqr(&t1, R->x); fp_montgomery_reduce(R->x, modulus, mp); /* X = X - Y */ fp_sub(R->x, R->y, R->x); if (fp_cmp_d(R->x, 0) == FP_LT) { fp_add(R->x, modulus, R->x); } /* X = X - Y */ fp_sub(R->x, R->y, R->x); if (fp_cmp_d(R->x, 0) == FP_LT) { fp_add(R->x, modulus, R->x); } /* Y = Y - X */ fp_sub(R->y, R->x, R->y); if (fp_cmp_d(R->y, 0) == FP_LT) { fp_add(R->y, modulus, R->y); } /* Y = Y * T1 */ fp_mul(R->y, &t1, R->y); fp_montgomery_reduce(R->y, modulus, mp); /* Y = Y - T2 */ fp_sub(R->y, &t2, R->y); if (fp_cmp_d(R->y, 0) == FP_LT) { fp_add(R->y, modulus, R->y); } return CRYPT_OK; } /** Add two ECC points @param P The point to add @param Q The point to add @param R [out] The destination of the double @param modulus The modulus of the field the ECC curve is in @param Mp The "b" value from montgomery_setup() @return CRYPT_OK on success */ static int tfm_ecc_projective_add_point(ecc_point *P, ecc_point *Q, ecc_point *R, void *modulus, void *Mp) { fp_int t1, t2, x, y, z; fp_digit mp; LTC_ARGCHK(P != NULL); LTC_ARGCHK(Q != NULL); LTC_ARGCHK(R != NULL); LTC_ARGCHK(modulus != NULL); LTC_ARGCHK(Mp != NULL); mp = *((fp_digit*)Mp); fp_init(&t1); fp_init(&t2); fp_init(&x); fp_init(&y); fp_init(&z); /* should we dbl instead? */ fp_sub(modulus, Q->y, &t1); if ( (fp_cmp(P->x, Q->x) == FP_EQ) && (Q->z != NULL && fp_cmp(P->z, Q->z) == FP_EQ) && (fp_cmp(P->y, Q->y) == FP_EQ || fp_cmp(P->y, &t1) == FP_EQ)) { return tfm_ecc_projective_dbl_point(P, R, modulus, Mp); } fp_copy(P->x, &x); fp_copy(P->y, &y); fp_copy(P->z, &z); /* if Z is one then these are no-operations */ if (Q->z != NULL) { /* T1 = Z' * Z' */ fp_sqr(Q->z, &t1); fp_montgomery_reduce(&t1, modulus, mp); /* X = X * T1 */ fp_mul(&t1, &x, &x); fp_montgomery_reduce(&x, modulus, mp); /* T1 = Z' * T1 */ fp_mul(Q->z, &t1, &t1); fp_montgomery_reduce(&t1, modulus, mp); /* Y = Y * T1 */ fp_mul(&t1, &y, &y); fp_montgomery_reduce(&y, modulus, mp); } /* T1 = Z*Z */ fp_sqr(&z, &t1); fp_montgomery_reduce(&t1, modulus, mp); /* T2 = X' * T1 */ fp_mul(Q->x, &t1, &t2); fp_montgomery_reduce(&t2, modulus, mp); /* T1 = Z * T1 */ fp_mul(&z, &t1, &t1); fp_montgomery_reduce(&t1, modulus, mp); /* T1 = Y' * T1 */ fp_mul(Q->y, &t1, &t1); fp_montgomery_reduce(&t1, modulus, mp); /* Y = Y - T1 */ fp_sub(&y, &t1, &y); if (fp_cmp_d(&y, 0) == FP_LT) { fp_add(&y, modulus, &y); } /* T1 = 2T1 */ fp_add(&t1, &t1, &t1); if (fp_cmp(&t1, modulus) != FP_LT) { fp_sub(&t1, modulus, &t1); } /* T1 = Y + T1 */ fp_add(&t1, &y, &t1); if (fp_cmp(&t1, modulus) != FP_LT) { fp_sub(&t1, modulus, &t1); } /* X = X - T2 */ fp_sub(&x, &t2, &x); if (fp_cmp_d(&x, 0) == FP_LT) { fp_add(&x, modulus, &x); } /* T2 = 2T2 */ fp_add(&t2, &t2, &t2); if (fp_cmp(&t2, modulus) != FP_LT) { fp_sub(&t2, modulus, &t2); } /* T2 = X + T2 */ fp_add(&t2, &x, &t2); if (fp_cmp(&t2, modulus) != FP_LT) { fp_sub(&t2, modulus, &t2); } /* if Z' != 1 */ if (Q->z != NULL) { /* Z = Z * Z' */ fp_mul(&z, Q->z, &z); fp_montgomery_reduce(&z, modulus, mp); } /* Z = Z * X */ fp_mul(&z, &x, &z); fp_montgomery_reduce(&z, modulus, mp); /* T1 = T1 * X */ fp_mul(&t1, &x, &t1); fp_montgomery_reduce(&t1, modulus, mp); /* X = X * X */ fp_sqr(&x, &x); fp_montgomery_reduce(&x, modulus, mp); /* T2 = T2 * x */ fp_mul(&t2, &x, &t2); fp_montgomery_reduce(&t2, modulus, mp); /* T1 = T1 * X */ fp_mul(&t1, &x, &t1); fp_montgomery_reduce(&t1, modulus, mp); /* X = Y*Y */ fp_sqr(&y, &x); fp_montgomery_reduce(&x, modulus, mp); /* X = X - T2 */ fp_sub(&x, &t2, &x); if (fp_cmp_d(&x, 0) == FP_LT) { fp_add(&x, modulus, &x); } /* T2 = T2 - X */ fp_sub(&t2, &x, &t2); if (fp_cmp_d(&t2, 0) == FP_LT) { fp_add(&t2, modulus, &t2); } /* T2 = T2 - X */ fp_sub(&t2, &x, &t2); if (fp_cmp_d(&t2, 0) == FP_LT) { fp_add(&t2, modulus, &t2); } /* T2 = T2 * Y */ fp_mul(&t2, &y, &t2); fp_montgomery_reduce(&t2, modulus, mp); /* Y = T2 - T1 */ fp_sub(&t2, &t1, &y); if (fp_cmp_d(&y, 0) == FP_LT) { fp_add(&y, modulus, &y); } /* Y = Y/2 */ if (fp_isodd(&y)) { fp_add(&y, modulus, &y); } fp_div_2(&y, &y); fp_copy(&x, R->x); fp_copy(&y, R->y); fp_copy(&z, R->z); return CRYPT_OK; } #endif static int set_rand(void *a, int size) { LTC_ARGCHK(a != NULL); fp_rand(a, size); return CRYPT_OK; } const ltc_math_descriptor tfm_desc = { "TomsFastMath", (int)DIGIT_BIT, &init, &init_copy, &deinit, &neg, ©, &set_int, &get_int, &get_digit, &get_digit_count, &compare, &compare_d, &count_bits, &count_lsb_bits, &twoexpt, &read_radix, &write_radix, &unsigned_size, &unsigned_write, &unsigned_read, &add, &addi, &sub, &subi, &mul, &muli, &sqr, ÷, &div_2, &modi, &gcd, &lcm, &mulmod, &sqrmod, &invmod, &montgomery_setup, &montgomery_normalization, &montgomery_reduce, &montgomery_deinit, &exptmod, &isprime, #ifdef LTC_MECC #ifdef LTC_MECC_FP <c_ecc_fp_mulmod, #else <c_ecc_mulmod, #endif /* LTC_MECC_FP */ #ifdef LTC_MECC_ACCEL &tfm_ecc_projective_add_point, &tfm_ecc_projective_dbl_point, #else <c_ecc_projective_add_point, <c_ecc_projective_dbl_point, #endif /* LTC_MECC_ACCEL */ <c_ecc_map, #ifdef LTC_ECC_SHAMIR #ifdef LTC_MECC_FP <c_ecc_fp_mul2add, #else <c_ecc_mul2add, #endif /* LTC_MECC_FP */ #else NULL, #endif /* LTC_ECC_SHAMIR */ #else NULL, NULL, NULL, NULL, NULL, #endif /* LTC_MECC */ #ifdef LTC_MRSA &rsa_make_key, &rsa_exptmod, #else NULL, NULL, #endif &addmod, &submod, set_rand, }; #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */