view libtomcrypt/src/pk/pkcs1/pkcs_1_pss_encode.c @ 1861:2b3a8026a6ce

Add re-exec for server This allows ASLR to re-randomize the address space for every connection, preventing some vulnerabilities from being exploitable by repeated probing. Overhead (memory and time) is yet to be confirmed. At present this is only enabled on Linux. Other BSD platforms with fexecve() would probably also work though have not been tested.
author Matt Johnston <matt@ucc.asn.au>
date Sun, 30 Jan 2022 10:14:56 +0800
parents 6dba84798cd5
children
line wrap: on
line source

/* LibTomCrypt, modular cryptographic library -- Tom St Denis
 *
 * LibTomCrypt is a library that provides various cryptographic
 * algorithms in a highly modular and flexible manner.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 */
#include "tomcrypt.h"

/**
  @file pkcs_1_pss_encode.c
  PKCS #1 PSS Signature Padding, Tom St Denis
*/

#ifdef LTC_PKCS_1

/**
   PKCS #1 v2.00 Signature Encoding
   @param msghash          The hash to encode
   @param msghashlen       The length of the hash (octets)
   @param saltlen          The length of the salt desired (octets)
   @param prng             An active PRNG context
   @param prng_idx         The index of the PRNG desired
   @param hash_idx         The index of the hash desired
   @param modulus_bitlen   The bit length of the RSA modulus
   @param out              [out] The destination of the encoding
   @param outlen           [in/out] The max size and resulting size of the encoded data
   @return CRYPT_OK if successful
*/
int pkcs_1_pss_encode(const unsigned char *msghash, unsigned long msghashlen,
                            unsigned long saltlen,  prng_state   *prng,
                            int           prng_idx, int           hash_idx,
                            unsigned long modulus_bitlen,
                            unsigned char *out,     unsigned long *outlen)
{
   unsigned char *DB, *mask, *salt, *hash;
   unsigned long x, y, hLen, modulus_len;
   int           err;
   hash_state    md;

   LTC_ARGCHK(msghash != NULL);
   LTC_ARGCHK(out     != NULL);
   LTC_ARGCHK(outlen  != NULL);

   /* ensure hash and PRNG are valid */
   if ((err = hash_is_valid(hash_idx)) != CRYPT_OK) {
      return err;
   }
   if ((err = prng_is_valid(prng_idx)) != CRYPT_OK) {
      return err;
   }

   hLen        = hash_descriptor[hash_idx].hashsize;
   modulus_bitlen--;
   modulus_len = (modulus_bitlen>>3) + (modulus_bitlen & 7 ? 1 : 0);

   /* check sizes */
   if ((saltlen > modulus_len) || (modulus_len < hLen + saltlen + 2)) {
      return CRYPT_PK_INVALID_SIZE;
   }

   /* allocate ram for DB/mask/salt/hash of size modulus_len */
   DB   = XMALLOC(modulus_len);
   mask = XMALLOC(modulus_len);
   salt = XMALLOC(modulus_len);
   hash = XMALLOC(modulus_len);
   if (DB == NULL || mask == NULL || salt == NULL || hash == NULL) {
      if (DB != NULL) {
         XFREE(DB);
      }
      if (mask != NULL) {
         XFREE(mask);
      }
      if (salt != NULL) {
         XFREE(salt);
      }
      if (hash != NULL) {
         XFREE(hash);
      }
      return CRYPT_MEM;
   }


   /* generate random salt */
   if (saltlen > 0) {
      if (prng_descriptor[prng_idx].read(salt, saltlen, prng) != saltlen) {
         err = CRYPT_ERROR_READPRNG;
         goto LBL_ERR;
      }
   }

   /* M = (eight) 0x00 || msghash || salt, hash = H(M) */
   if ((err = hash_descriptor[hash_idx].init(&md)) != CRYPT_OK) {
      goto LBL_ERR;
   }
   zeromem(DB, 8);
   if ((err = hash_descriptor[hash_idx].process(&md, DB, 8)) != CRYPT_OK) {
      goto LBL_ERR;
   }
   if ((err = hash_descriptor[hash_idx].process(&md, msghash, msghashlen)) != CRYPT_OK) {
      goto LBL_ERR;
   }
   if ((err = hash_descriptor[hash_idx].process(&md, salt, saltlen)) != CRYPT_OK) {
      goto LBL_ERR;
   }
   if ((err = hash_descriptor[hash_idx].done(&md, hash)) != CRYPT_OK) {
      goto LBL_ERR;
   }

   /* generate DB = PS || 0x01 || salt, PS == modulus_len - saltlen - hLen - 2 zero bytes */
   x = 0;
   XMEMSET(DB + x, 0, modulus_len - saltlen - hLen - 2);
   x += modulus_len - saltlen - hLen - 2;
   DB[x++] = 0x01;
   XMEMCPY(DB + x, salt, saltlen);
   /* x += saltlen; */

   /* generate mask of length modulus_len - hLen - 1 from hash */
   if ((err = pkcs_1_mgf1(hash_idx, hash, hLen, mask, modulus_len - hLen - 1)) != CRYPT_OK) {
      goto LBL_ERR;
   }

   /* xor against DB */
   for (y = 0; y < (modulus_len - hLen - 1); y++) {
      DB[y] ^= mask[y];
   }

   /* output is DB || hash || 0xBC */
   if (*outlen < modulus_len) {
      *outlen = modulus_len;
      err = CRYPT_BUFFER_OVERFLOW;
      goto LBL_ERR;
   }

   /* DB len = modulus_len - hLen - 1 */
   y = 0;
   XMEMCPY(out + y, DB, modulus_len - hLen - 1);
   y += modulus_len - hLen - 1;

   /* hash */
   XMEMCPY(out + y, hash, hLen);
   y += hLen;

   /* 0xBC */
   out[y] = 0xBC;

   /* now clear the 8*modulus_len - modulus_bitlen most significant bits */
   out[0] &= 0xFF >> ((modulus_len<<3) - modulus_bitlen);

   /* store output size */
   *outlen = modulus_len;
   err = CRYPT_OK;
LBL_ERR:
#ifdef LTC_CLEAN_STACK
   zeromem(DB,   modulus_len);
   zeromem(mask, modulus_len);
   zeromem(salt, modulus_len);
   zeromem(hash, modulus_len);
#endif

   XFREE(hash);
   XFREE(salt);
   XFREE(mask);
   XFREE(DB);

   return err;
}

#endif /* LTC_PKCS_1 */

/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */