Mercurial > dropbear
view libtommath/bn_s_mp_sqr.c @ 1638:315fcba6960e
dropbearconvert: keyimport.c: fix BER encoding of secp521r1 keys (#69)
keysizes >= 128 octets will be encoded with a 3 byte header
which must be accounted by the optional-header
Reproduce:
master:~/build/dropbear$ ./dropbearkey -t ecdsa -s 521 -f K
Generating 521 bit ecdsa key, this may take a while...
master:~/build/dropbear$ ./dropbearconvert d o K L
Key is a ecdsa-sha2-nistp521 key
Wrote key to 'L'
master:~/build/dropbear$ openssl ec < L
read EC key
unable to load Key
139769806448384:error:0D07209B:asn1 encoding routines:ASN1_get_object:too long:crypto/asn1/asn1_lib.c:91:
author | Christian Hohnstädt <christian@hohnstaedt.de> |
---|---|
date | Wed, 20 Mar 2019 16:42:47 +0100 |
parents | 8bba51a55704 |
children | f52919ffd3b1 |
line wrap: on
line source
#include <tommath_private.h> #ifdef BN_S_MP_SQR_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, [email protected], http://libtom.org */ /* low level squaring, b = a*a, HAC pp.596-597, Algorithm 14.16 */ int s_mp_sqr (mp_int * a, mp_int * b) { mp_int t; int res, ix, iy, pa; mp_word r; mp_digit u, tmpx, *tmpt; pa = a->used; if ((res = mp_init_size (&t, (2 * pa) + 1)) != MP_OKAY) { return res; } /* default used is maximum possible size */ t.used = (2 * pa) + 1; for (ix = 0; ix < pa; ix++) { /* first calculate the digit at 2*ix */ /* calculate double precision result */ r = (mp_word)t.dp[2*ix] + ((mp_word)a->dp[ix] * (mp_word)a->dp[ix]); /* store lower part in result */ t.dp[ix+ix] = (mp_digit) (r & ((mp_word) MP_MASK)); /* get the carry */ u = (mp_digit)(r >> ((mp_word) DIGIT_BIT)); /* left hand side of A[ix] * A[iy] */ tmpx = a->dp[ix]; /* alias for where to store the results */ tmpt = t.dp + ((2 * ix) + 1); for (iy = ix + 1; iy < pa; iy++) { /* first calculate the product */ r = ((mp_word)tmpx) * ((mp_word)a->dp[iy]); /* now calculate the double precision result, note we use * addition instead of *2 since it's easier to optimize */ r = ((mp_word) *tmpt) + r + r + ((mp_word) u); /* store lower part */ *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK)); /* get carry */ u = (mp_digit)(r >> ((mp_word) DIGIT_BIT)); } /* propagate upwards */ while (u != ((mp_digit) 0)) { r = ((mp_word) *tmpt) + ((mp_word) u); *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK)); u = (mp_digit)(r >> ((mp_word) DIGIT_BIT)); } } mp_clamp (&t); mp_exch (&t, b); mp_clear (&t); return MP_OKAY; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */