Mercurial > dropbear
view libtommath/bn_mp_prime_fermat.c @ 1694:39534eedf429
Mention libtom version requirements, check for poly1305 in libtomcrypt
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Wed, 27 May 2020 00:05:15 +0800 |
parents | 1051e4eea25a |
children |
line wrap: on
line source
#include "tommath_private.h" #ifdef BN_MP_PRIME_FERMAT_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* performs one Fermat test. * * If "a" were prime then b**a == b (mod a) since the order of * the multiplicative sub-group would be phi(a) = a-1. That means * it would be the same as b**(a mod (a-1)) == b**1 == b (mod a). * * Sets result to 1 if the congruence holds, or zero otherwise. */ mp_err mp_prime_fermat(const mp_int *a, const mp_int *b, mp_bool *result) { mp_int t; mp_err err; /* default to composite */ *result = MP_NO; /* ensure b > 1 */ if (mp_cmp_d(b, 1uL) != MP_GT) { return MP_VAL; } /* init t */ if ((err = mp_init(&t)) != MP_OKAY) { return err; } /* compute t = b**a mod a */ if ((err = mp_exptmod(b, a, a, &t)) != MP_OKAY) { goto LBL_T; } /* is it equal to b? */ if (mp_cmp(&t, b) == MP_EQ) { *result = MP_YES; } err = MP_OKAY; LBL_T: mp_clear(&t); return err; } #endif