Mercurial > dropbear
view libtomcrypt/src/pk/dsa/dsa_verify_key.c @ 1715:3974f087d9c0
Disallow leading lines before the ident for server (#102)
Per RFC4253 4.2 clients must be able to process other lines of data
before the version string, server behavior is not defined neither
with MUST/SHOULD nor with MAY.
If server process up to 50 lines too - it may cause too long hanging
session with invalid/evil client that consume host resources and
potentially may lead to DDoS on poor embedded boxes.
Let's require first line from client to be version string and fail
early if it's not - matches both RFC and real OpenSSH behavior.
author | Vladislav Grishenko <themiron@users.noreply.github.com> |
---|---|
date | Mon, 15 Jun 2020 18:22:18 +0500 |
parents | 6dba84798cd5 |
children |
line wrap: on
line source
/* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. */ #include "tomcrypt.h" /** @file dsa_verify_key.c DSA implementation, verify a key, Tom St Denis */ #ifdef LTC_MDSA /** Validate a DSA key Yeah, this function should've been called dsa_validate_key() in the first place and for compat-reasons we keep it as it was (for now). @param key The key to validate @param stat [out] Result of test, 1==valid, 0==invalid @return CRYPT_OK if successful */ int dsa_verify_key(dsa_key *key, int *stat) { int err; err = dsa_int_validate_primes(key, stat); if (err != CRYPT_OK || *stat == 0) return err; err = dsa_int_validate_pqg(key, stat); if (err != CRYPT_OK || *stat == 0) return err; return dsa_int_validate_xy(key, stat); } /** Non-complex part (no primality testing) of the validation of DSA params (p, q, g) @param key The key to validate @param stat [out] Result of test, 1==valid, 0==invalid @return CRYPT_OK if successful */ int dsa_int_validate_pqg(dsa_key *key, int *stat) { void *tmp1, *tmp2; int err; LTC_ARGCHK(key != NULL); LTC_ARGCHK(stat != NULL); *stat = 0; /* check q-order */ if ( key->qord >= LTC_MDSA_MAX_GROUP || key->qord <= 15 || (unsigned long)key->qord >= mp_unsigned_bin_size(key->p) || (mp_unsigned_bin_size(key->p) - key->qord) >= LTC_MDSA_DELTA ) { return CRYPT_OK; } /* FIPS 186-4 chapter 4.1: 1 < g < p */ if (mp_cmp_d(key->g, 1) != LTC_MP_GT || mp_cmp(key->g, key->p) != LTC_MP_LT) { return CRYPT_OK; } if ((err = mp_init_multi(&tmp1, &tmp2, NULL)) != CRYPT_OK) { return err; } /* FIPS 186-4 chapter 4.1: q is a divisor of (p - 1) */ if ((err = mp_sub_d(key->p, 1, tmp1)) != CRYPT_OK) { goto error; } if ((err = mp_div(tmp1, key->q, tmp1, tmp2)) != CRYPT_OK) { goto error; } if (mp_iszero(tmp2) != LTC_MP_YES) { err = CRYPT_OK; goto error; } /* FIPS 186-4 chapter 4.1: g is a generator of a subgroup of order q in * the multiplicative group of GF(p) - so we make sure that g^q mod p = 1 */ if ((err = mp_exptmod(key->g, key->q, key->p, tmp1)) != CRYPT_OK) { goto error; } if (mp_cmp_d(tmp1, 1) != LTC_MP_EQ) { err = CRYPT_OK; goto error; } err = CRYPT_OK; *stat = 1; error: mp_clear_multi(tmp2, tmp1, NULL); return err; } /** Primality testing of DSA params p and q @param key The key to validate @param stat [out] Result of test, 1==valid, 0==invalid @return CRYPT_OK if successful */ int dsa_int_validate_primes(dsa_key *key, int *stat) { int err, res; *stat = 0; LTC_ARGCHK(key != NULL); LTC_ARGCHK(stat != NULL); /* key->q prime? */ if ((err = mp_prime_is_prime(key->q, LTC_MILLER_RABIN_REPS, &res)) != CRYPT_OK) { return err; } if (res == LTC_MP_NO) { return CRYPT_OK; } /* key->p prime? */ if ((err = mp_prime_is_prime(key->p, LTC_MILLER_RABIN_REPS, &res)) != CRYPT_OK) { return err; } if (res == LTC_MP_NO) { return CRYPT_OK; } *stat = 1; return CRYPT_OK; } /** Validation of a DSA key (x and y values) @param key The key to validate @param stat [out] Result of test, 1==valid, 0==invalid @return CRYPT_OK if successful */ int dsa_int_validate_xy(dsa_key *key, int *stat) { void *tmp; int err; *stat = 0; LTC_ARGCHK(key != NULL); LTC_ARGCHK(stat != NULL); /* 1 < y < p-1 */ if ((err = mp_init(&tmp)) != CRYPT_OK) { return err; } if ((err = mp_sub_d(key->p, 1, tmp)) != CRYPT_OK) { goto error; } if (mp_cmp_d(key->y, 1) != LTC_MP_GT || mp_cmp(key->y, tmp) != LTC_MP_LT) { err = CRYPT_OK; goto error; } if (key->type == PK_PRIVATE) { /* FIPS 186-4 chapter 4.1: 0 < x < q */ if (mp_cmp_d(key->x, 0) != LTC_MP_GT || mp_cmp(key->x, key->q) != LTC_MP_LT) { err = CRYPT_OK; goto error; } /* FIPS 186-4 chapter 4.1: y = g^x mod p */ if ((err = mp_exptmod(key->g, key->x, key->p, tmp)) != CRYPT_OK) { goto error; } if (mp_cmp(tmp, key->y) != LTC_MP_EQ) { err = CRYPT_OK; goto error; } } else { /* with just a public key we cannot test y = g^x mod p therefore we * only test that y^q mod p = 1, which makes sure y is in g^x mod p */ if ((err = mp_exptmod(key->y, key->q, key->p, tmp)) != CRYPT_OK) { goto error; } if (mp_cmp_d(tmp, 1) != LTC_MP_EQ) { err = CRYPT_OK; goto error; } } err = CRYPT_OK; *stat = 1; error: mp_clear(tmp); return err; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */