view libtommath/bn_mp_montgomery_reduce.c @ 1715:3974f087d9c0

Disallow leading lines before the ident for server (#102) Per RFC4253 4.2 clients must be able to process other lines of data before the version string, server behavior is not defined neither with MUST/SHOULD nor with MAY. If server process up to 50 lines too - it may cause too long hanging session with invalid/evil client that consume host resources and potentially may lead to DDoS on poor embedded boxes. Let's require first line from client to be version string and fail early if it's not - matches both RFC and real OpenSSH behavior.
author Vladislav Grishenko <themiron@users.noreply.github.com>
date Mon, 15 Jun 2020 18:22:18 +0500
parents 1051e4eea25a
children
line wrap: on
line source

#include "tommath_private.h"
#ifdef BN_MP_MONTGOMERY_REDUCE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */

/* computes xR**-1 == x (mod N) via Montgomery Reduction */
mp_err mp_montgomery_reduce(mp_int *x, const mp_int *n, mp_digit rho)
{
   int      ix, digs;
   mp_err   err;
   mp_digit mu;

   /* can the fast reduction [comba] method be used?
    *
    * Note that unlike in mul you're safely allowed *less*
    * than the available columns [255 per default] since carries
    * are fixed up in the inner loop.
    */
   digs = (n->used * 2) + 1;
   if ((digs < MP_WARRAY) &&
       (x->used <= MP_WARRAY) &&
       (n->used < MP_MAXFAST)) {
      return s_mp_montgomery_reduce_fast(x, n, rho);
   }

   /* grow the input as required */
   if (x->alloc < digs) {
      if ((err = mp_grow(x, digs)) != MP_OKAY) {
         return err;
      }
   }
   x->used = digs;

   for (ix = 0; ix < n->used; ix++) {
      /* mu = ai * rho mod b
       *
       * The value of rho must be precalculated via
       * montgomery_setup() such that
       * it equals -1/n0 mod b this allows the
       * following inner loop to reduce the
       * input one digit at a time
       */
      mu = (mp_digit)(((mp_word)x->dp[ix] * (mp_word)rho) & MP_MASK);

      /* a = a + mu * m * b**i */
      {
         int iy;
         mp_digit *tmpn, *tmpx, u;
         mp_word r;

         /* alias for digits of the modulus */
         tmpn = n->dp;

         /* alias for the digits of x [the input] */
         tmpx = x->dp + ix;

         /* set the carry to zero */
         u = 0;

         /* Multiply and add in place */
         for (iy = 0; iy < n->used; iy++) {
            /* compute product and sum */
            r       = ((mp_word)mu * (mp_word)*tmpn++) +
                      (mp_word)u + (mp_word)*tmpx;

            /* get carry */
            u       = (mp_digit)(r >> (mp_word)MP_DIGIT_BIT);

            /* fix digit */
            *tmpx++ = (mp_digit)(r & (mp_word)MP_MASK);
         }
         /* At this point the ix'th digit of x should be zero */


         /* propagate carries upwards as required*/
         while (u != 0u) {
            *tmpx   += u;
            u        = *tmpx >> MP_DIGIT_BIT;
            *tmpx++ &= MP_MASK;
         }
      }
   }

   /* at this point the n.used'th least
    * significant digits of x are all zero
    * which means we can shift x to the
    * right by n.used digits and the
    * residue is unchanged.
    */

   /* x = x/b**n.used */
   mp_clamp(x);
   mp_rshd(x, n->used);

   /* if x >= n then x = x - n */
   if (mp_cmp_mag(x, n) != MP_LT) {
      return s_mp_sub(x, n, x);
   }

   return MP_OKAY;
}
#endif