Mercurial > dropbear
view libtommath/bn_mp_prime_is_prime.c @ 1715:3974f087d9c0
Disallow leading lines before the ident for server (#102)
Per RFC4253 4.2 clients must be able to process other lines of data
before the version string, server behavior is not defined neither
with MUST/SHOULD nor with MAY.
If server process up to 50 lines too - it may cause too long hanging
session with invalid/evil client that consume host resources and
potentially may lead to DDoS on poor embedded boxes.
Let's require first line from client to be version string and fail
early if it's not - matches both RFC and real OpenSSH behavior.
author | Vladislav Grishenko <themiron@users.noreply.github.com> |
---|---|
date | Mon, 15 Jun 2020 18:22:18 +0500 |
parents | 1051e4eea25a |
children |
line wrap: on
line source
#include "tommath_private.h" #ifdef BN_MP_PRIME_IS_PRIME_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* portable integer log of two with small footprint */ static unsigned int s_floor_ilog2(int value) { unsigned int r = 0; while ((value >>= 1) != 0) { r++; } return r; } mp_err mp_prime_is_prime(const mp_int *a, int t, mp_bool *result) { mp_int b; int ix, p_max = 0, size_a, len; mp_bool res; mp_err err; unsigned int fips_rand, mask; /* default to no */ *result = MP_NO; /* Some shortcuts */ /* N > 3 */ if (a->used == 1) { if ((a->dp[0] == 0u) || (a->dp[0] == 1u)) { *result = MP_NO; return MP_OKAY; } if (a->dp[0] == 2u) { *result = MP_YES; return MP_OKAY; } } /* N must be odd */ if (MP_IS_EVEN(a)) { return MP_OKAY; } /* N is not a perfect square: floor(sqrt(N))^2 != N */ if ((err = mp_is_square(a, &res)) != MP_OKAY) { return err; } if (res != MP_NO) { return MP_OKAY; } /* is the input equal to one of the primes in the table? */ for (ix = 0; ix < PRIVATE_MP_PRIME_TAB_SIZE; ix++) { if (mp_cmp_d(a, s_mp_prime_tab[ix]) == MP_EQ) { *result = MP_YES; return MP_OKAY; } } #ifdef MP_8BIT /* The search in the loop above was exhaustive in this case */ if ((a->used == 1) && (PRIVATE_MP_PRIME_TAB_SIZE >= 31)) { return MP_OKAY; } #endif /* first perform trial division */ if ((err = s_mp_prime_is_divisible(a, &res)) != MP_OKAY) { return err; } /* return if it was trivially divisible */ if (res == MP_YES) { return MP_OKAY; } /* Run the Miller-Rabin test with base 2 for the BPSW test. */ if ((err = mp_init_set(&b, 2uL)) != MP_OKAY) { return err; } if ((err = mp_prime_miller_rabin(a, &b, &res)) != MP_OKAY) { goto LBL_B; } if (res == MP_NO) { goto LBL_B; } /* Rumours have it that Mathematica does a second M-R test with base 3. Other rumours have it that their strong L-S test is slightly different. It does not hurt, though, beside a bit of extra runtime. */ b.dp[0]++; if ((err = mp_prime_miller_rabin(a, &b, &res)) != MP_OKAY) { goto LBL_B; } if (res == MP_NO) { goto LBL_B; } /* * Both, the Frobenius-Underwood test and the the Lucas-Selfridge test are quite * slow so if speed is an issue, define LTM_USE_ONLY_MR to use M-R tests with * bases 2, 3 and t random bases. */ #ifndef LTM_USE_ONLY_MR if (t >= 0) { /* * Use a Frobenius-Underwood test instead of the Lucas-Selfridge test for * MP_8BIT (It is unknown if the Lucas-Selfridge test works with 16-bit * integers but the necesssary analysis is on the todo-list). */ #if defined (MP_8BIT) || defined (LTM_USE_FROBENIUS_TEST) err = mp_prime_frobenius_underwood(a, &res); if ((err != MP_OKAY) && (err != MP_ITER)) { goto LBL_B; } if (res == MP_NO) { goto LBL_B; } #else if ((err = mp_prime_strong_lucas_selfridge(a, &res)) != MP_OKAY) { goto LBL_B; } if (res == MP_NO) { goto LBL_B; } #endif } #endif /* run at least one Miller-Rabin test with a random base */ if (t == 0) { t = 1; } /* Only recommended if the input range is known to be < 3317044064679887385961981 It uses the bases necessary for a deterministic M-R test if the input is smaller than 3317044064679887385961981 The caller has to check the size. TODO: can be made a bit finer grained but comparing is not free. */ if (t < 0) { /* Sorenson, Jonathan; Webster, Jonathan (2015). "Strong Pseudoprimes to Twelve Prime Bases". */ /* 0x437ae92817f9fc85b7e5 = 318665857834031151167461 */ if ((err = mp_read_radix(&b, "437ae92817f9fc85b7e5", 16)) != MP_OKAY) { goto LBL_B; } if (mp_cmp(a, &b) == MP_LT) { p_max = 12; } else { /* 0x2be6951adc5b22410a5fd = 3317044064679887385961981 */ if ((err = mp_read_radix(&b, "2be6951adc5b22410a5fd", 16)) != MP_OKAY) { goto LBL_B; } if (mp_cmp(a, &b) == MP_LT) { p_max = 13; } else { err = MP_VAL; goto LBL_B; } } /* we did bases 2 and 3 already, skip them */ for (ix = 2; ix < p_max; ix++) { mp_set(&b, s_mp_prime_tab[ix]); if ((err = mp_prime_miller_rabin(a, &b, &res)) != MP_OKAY) { goto LBL_B; } if (res == MP_NO) { goto LBL_B; } } } /* Do "t" M-R tests with random bases between 3 and "a". See Fips 186.4 p. 126ff */ else if (t > 0) { /* * The mp_digit's have a defined bit-size but the size of the * array a.dp is a simple 'int' and this library can not assume full * compliance to the current C-standard (ISO/IEC 9899:2011) because * it gets used for small embeded processors, too. Some of those MCUs * have compilers that one cannot call standard compliant by any means. * Hence the ugly type-fiddling in the following code. */ size_a = mp_count_bits(a); mask = (1u << s_floor_ilog2(size_a)) - 1u; /* Assuming the General Rieman hypothesis (never thought to write that in a comment) the upper bound can be lowered to 2*(log a)^2. E. Bach, "Explicit bounds for primality testing and related problems," Math. Comp. 55 (1990), 355-380. size_a = (size_a/10) * 7; len = 2 * (size_a * size_a); E.g.: a number of size 2^2048 would be reduced to the upper limit floor(2048/10)*7 = 1428 2 * 1428^2 = 4078368 (would have been ~4030331.9962 with floats and natural log instead) That number is smaller than 2^28, the default bit-size of mp_digit. */ /* How many tests, you might ask? Dana Jacobsen of Math::Prime::Util fame does exactly 1. In words: one. Look at the end of _GMP_is_prime() in Math-Prime-Util-GMP-0.50/primality.c if you do not believe it. The function mp_rand() goes to some length to use a cryptographically good PRNG. That also means that the chance to always get the same base in the loop is non-zero, although very low. If the BPSW test and/or the addtional Frobenious test have been performed instead of just the Miller-Rabin test with the bases 2 and 3, a single extra test should suffice, so such a very unlikely event will not do much harm. To preemptivly answer the dangling question: no, a witness does not need to be prime. */ for (ix = 0; ix < t; ix++) { /* mp_rand() guarantees the first digit to be non-zero */ if ((err = mp_rand(&b, 1)) != MP_OKAY) { goto LBL_B; } /* * Reduce digit before casting because mp_digit might be bigger than * an unsigned int and "mask" on the other side is most probably not. */ fips_rand = (unsigned int)(b.dp[0] & (mp_digit) mask); #ifdef MP_8BIT /* * One 8-bit digit is too small, so concatenate two if the size of * unsigned int allows for it. */ if ((MP_SIZEOF_BITS(unsigned int)/2) >= MP_SIZEOF_BITS(mp_digit)) { if ((err = mp_rand(&b, 1)) != MP_OKAY) { goto LBL_B; } fips_rand <<= MP_SIZEOF_BITS(mp_digit); fips_rand |= (unsigned int) b.dp[0]; fips_rand &= mask; } #endif if (fips_rand > (unsigned int)(INT_MAX - MP_DIGIT_BIT)) { len = INT_MAX / MP_DIGIT_BIT; } else { len = (((int)fips_rand + MP_DIGIT_BIT) / MP_DIGIT_BIT); } /* Unlikely. */ if (len < 0) { ix--; continue; } /* * As mentioned above, one 8-bit digit is too small and * although it can only happen in the unlikely case that * an "unsigned int" is smaller than 16 bit a simple test * is cheap and the correction even cheaper. */ #ifdef MP_8BIT /* All "a" < 2^8 have been caught before */ if (len == 1) { len++; } #endif if ((err = mp_rand(&b, len)) != MP_OKAY) { goto LBL_B; } /* * That number might got too big and the witness has to be * smaller than "a" */ len = mp_count_bits(&b); if (len >= size_a) { len = (len - size_a) + 1; if ((err = mp_div_2d(&b, len, &b, NULL)) != MP_OKAY) { goto LBL_B; } } /* Although the chance for b <= 3 is miniscule, try again. */ if (mp_cmp_d(&b, 3uL) != MP_GT) { ix--; continue; } if ((err = mp_prime_miller_rabin(a, &b, &res)) != MP_OKAY) { goto LBL_B; } if (res == MP_NO) { goto LBL_B; } } } /* passed the test */ *result = MP_YES; LBL_B: mp_clear(&b); return err; } #endif