Mercurial > dropbear
view libtommath/bn_s_mp_exptmod.c @ 1715:3974f087d9c0
Disallow leading lines before the ident for server (#102)
Per RFC4253 4.2 clients must be able to process other lines of data
before the version string, server behavior is not defined neither
with MUST/SHOULD nor with MAY.
If server process up to 50 lines too - it may cause too long hanging
session with invalid/evil client that consume host resources and
potentially may lead to DDoS on poor embedded boxes.
Let's require first line from client to be version string and fail
early if it's not - matches both RFC and real OpenSSH behavior.
author | Vladislav Grishenko <themiron@users.noreply.github.com> |
---|---|
date | Mon, 15 Jun 2020 18:22:18 +0500 |
parents | 1051e4eea25a |
children |
line wrap: on
line source
#include "tommath_private.h" #ifdef BN_S_MP_EXPTMOD_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ #ifdef MP_LOW_MEM # define TAB_SIZE 32 # define MAX_WINSIZE 5 #else # define TAB_SIZE 256 # define MAX_WINSIZE 0 #endif mp_err s_mp_exptmod(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y, int redmode) { mp_int M[TAB_SIZE], res, mu; mp_digit buf; mp_err err; int bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize; mp_err(*redux)(mp_int *x, const mp_int *m, const mp_int *mu); /* find window size */ x = mp_count_bits(X); if (x <= 7) { winsize = 2; } else if (x <= 36) { winsize = 3; } else if (x <= 140) { winsize = 4; } else if (x <= 450) { winsize = 5; } else if (x <= 1303) { winsize = 6; } else if (x <= 3529) { winsize = 7; } else { winsize = 8; } winsize = MAX_WINSIZE ? MP_MIN(MAX_WINSIZE, winsize) : winsize; /* init M array */ /* init first cell */ if ((err = mp_init(&M[1])) != MP_OKAY) { return err; } /* now init the second half of the array */ for (x = 1<<(winsize-1); x < (1 << winsize); x++) { if ((err = mp_init(&M[x])) != MP_OKAY) { for (y = 1<<(winsize-1); y < x; y++) { mp_clear(&M[y]); } mp_clear(&M[1]); return err; } } /* create mu, used for Barrett reduction */ if ((err = mp_init(&mu)) != MP_OKAY) goto LBL_M; if (redmode == 0) { if ((err = mp_reduce_setup(&mu, P)) != MP_OKAY) goto LBL_MU; redux = mp_reduce; } else { if ((err = mp_reduce_2k_setup_l(P, &mu)) != MP_OKAY) goto LBL_MU; redux = mp_reduce_2k_l; } /* create M table * * The M table contains powers of the base, * e.g. M[x] = G**x mod P * * The first half of the table is not * computed though accept for M[0] and M[1] */ if ((err = mp_mod(G, P, &M[1])) != MP_OKAY) goto LBL_MU; /* compute the value at M[1<<(winsize-1)] by squaring * M[1] (winsize-1) times */ if ((err = mp_copy(&M[1], &M[(size_t)1 << (winsize - 1)])) != MP_OKAY) goto LBL_MU; for (x = 0; x < (winsize - 1); x++) { /* square it */ if ((err = mp_sqr(&M[(size_t)1 << (winsize - 1)], &M[(size_t)1 << (winsize - 1)])) != MP_OKAY) goto LBL_MU; /* reduce modulo P */ if ((err = redux(&M[(size_t)1 << (winsize - 1)], P, &mu)) != MP_OKAY) goto LBL_MU; } /* create upper table, that is M[x] = M[x-1] * M[1] (mod P) * for x = (2**(winsize - 1) + 1) to (2**winsize - 1) */ for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) { if ((err = mp_mul(&M[x - 1], &M[1], &M[x])) != MP_OKAY) goto LBL_MU; if ((err = redux(&M[x], P, &mu)) != MP_OKAY) goto LBL_MU; } /* setup result */ if ((err = mp_init(&res)) != MP_OKAY) goto LBL_MU; mp_set(&res, 1uL); /* set initial mode and bit cnt */ mode = 0; bitcnt = 1; buf = 0; digidx = X->used - 1; bitcpy = 0; bitbuf = 0; for (;;) { /* grab next digit as required */ if (--bitcnt == 0) { /* if digidx == -1 we are out of digits */ if (digidx == -1) { break; } /* read next digit and reset the bitcnt */ buf = X->dp[digidx--]; bitcnt = (int)MP_DIGIT_BIT; } /* grab the next msb from the exponent */ y = (buf >> (mp_digit)(MP_DIGIT_BIT - 1)) & 1uL; buf <<= (mp_digit)1; /* if the bit is zero and mode == 0 then we ignore it * These represent the leading zero bits before the first 1 bit * in the exponent. Technically this opt is not required but it * does lower the # of trivial squaring/reductions used */ if ((mode == 0) && (y == 0)) { continue; } /* if the bit is zero and mode == 1 then we square */ if ((mode == 1) && (y == 0)) { if ((err = mp_sqr(&res, &res)) != MP_OKAY) goto LBL_RES; if ((err = redux(&res, P, &mu)) != MP_OKAY) goto LBL_RES; continue; } /* else we add it to the window */ bitbuf |= (y << (winsize - ++bitcpy)); mode = 2; if (bitcpy == winsize) { /* ok window is filled so square as required and multiply */ /* square first */ for (x = 0; x < winsize; x++) { if ((err = mp_sqr(&res, &res)) != MP_OKAY) goto LBL_RES; if ((err = redux(&res, P, &mu)) != MP_OKAY) goto LBL_RES; } /* then multiply */ if ((err = mp_mul(&res, &M[bitbuf], &res)) != MP_OKAY) goto LBL_RES; if ((err = redux(&res, P, &mu)) != MP_OKAY) goto LBL_RES; /* empty window and reset */ bitcpy = 0; bitbuf = 0; mode = 1; } } /* if bits remain then square/multiply */ if ((mode == 2) && (bitcpy > 0)) { /* square then multiply if the bit is set */ for (x = 0; x < bitcpy; x++) { if ((err = mp_sqr(&res, &res)) != MP_OKAY) goto LBL_RES; if ((err = redux(&res, P, &mu)) != MP_OKAY) goto LBL_RES; bitbuf <<= 1; if ((bitbuf & (1 << winsize)) != 0) { /* then multiply */ if ((err = mp_mul(&res, &M[1], &res)) != MP_OKAY) goto LBL_RES; if ((err = redux(&res, P, &mu)) != MP_OKAY) goto LBL_RES; } } } mp_exch(&res, Y); err = MP_OKAY; LBL_RES: mp_clear(&res); LBL_MU: mp_clear(&mu); LBL_M: mp_clear(&M[1]); for (x = 1<<(winsize-1); x < (1 << winsize); x++) { mp_clear(&M[x]); } return err; } #endif