view libtomcrypt/demos/tv_gen.c @ 922:3a32abe076fc coverity

Don't 'make install' for coverity
author Matt Johnston <matt@ucc.asn.au>
date Sat, 08 Mar 2014 21:00:32 +0800
parents 0cbe8f6dbf9e
children f849a5ca2efc
line wrap: on
line source

#include <tomcrypt.h>

void reg_algs(void)
{
  int err;

#ifdef RIJNDAEL
  register_cipher (&aes_desc);
#endif
#ifdef BLOWFISH
  register_cipher (&blowfish_desc);
#endif
#ifdef XTEA
  register_cipher (&xtea_desc);
#endif
#ifdef RC5
  register_cipher (&rc5_desc);
#endif
#ifdef RC6
  register_cipher (&rc6_desc);
#endif
#ifdef SAFERP
  register_cipher (&saferp_desc);
#endif
#ifdef TWOFISH
  register_cipher (&twofish_desc);
#endif
#ifdef SAFER
  register_cipher (&safer_k64_desc);
  register_cipher (&safer_sk64_desc);
  register_cipher (&safer_k128_desc);
  register_cipher (&safer_sk128_desc);
#endif
#ifdef RC2
  register_cipher (&rc2_desc);
#endif
#ifdef DES
  register_cipher (&des_desc);
  register_cipher (&des3_desc);
#endif
#ifdef CAST5
  register_cipher (&cast5_desc);
#endif
#ifdef NOEKEON
  register_cipher (&noekeon_desc);
#endif
#ifdef SKIPJACK
  register_cipher (&skipjack_desc);
#endif
#ifdef ANUBIS
  register_cipher (&anubis_desc);
#endif
#ifdef KHAZAD
  register_cipher (&khazad_desc);
#endif

#ifdef TIGER
  register_hash (&tiger_desc);
#endif
#ifdef MD2
  register_hash (&md2_desc);
#endif
#ifdef MD4
  register_hash (&md4_desc);
#endif
#ifdef MD5
  register_hash (&md5_desc);
#endif
#ifdef SHA1
  register_hash (&sha1_desc);
#endif
#ifdef SHA224
  register_hash (&sha224_desc);
#endif
#ifdef SHA256
  register_hash (&sha256_desc);
#endif
#ifdef SHA384
  register_hash (&sha384_desc);
#endif
#ifdef SHA512
  register_hash (&sha512_desc);
#endif
#ifdef RIPEMD128
  register_hash (&rmd128_desc);
#endif
#ifdef RIPEMD160
  register_hash (&rmd160_desc);
#endif
#ifdef WHIRLPOOL
  register_hash (&whirlpool_desc);
#endif
#ifdef CHC_HASH
  register_hash(&chc_desc);
  if ((err = chc_register(register_cipher(&aes_desc))) != CRYPT_OK) {
     printf("chc_register error: %s\n", error_to_string(err));
     exit(EXIT_FAILURE);
  }
#endif

#ifdef USE_LTM
   ltc_mp = ltm_desc;
#elif defined(USE_TFM)
   ltc_mp = tfm_desc;
#elif defined(USE_GMP)
   ltc_mp = gmp_desc;
#else
   extern ltc_math_descriptor EXT_MATH_LIB;
   ltc_mp = EXT_MATH_LIB;
#endif


}

void hash_gen(void)
{
   unsigned char md[MAXBLOCKSIZE], *buf;
   unsigned long outlen, x, y, z;
   FILE *out;
   int   err;
   
   out = fopen("hash_tv.txt", "w");
   if (out == NULL) {
      perror("can't open hash_tv");
   }
   
   fprintf(out, "Hash Test Vectors:\n\nThese are the hashes of nn bytes '00 01 02 03 .. (nn-1)'\n\n");
   for (x = 0; hash_descriptor[x].name != NULL; x++) {
      buf = XMALLOC(2 * hash_descriptor[x].blocksize + 1);
      if (buf == NULL) {
         perror("can't alloc mem");
         exit(EXIT_FAILURE);
      }
      fprintf(out, "Hash: %s\n", hash_descriptor[x].name);
      for (y = 0; y <= (hash_descriptor[x].blocksize * 2); y++) {
         for (z = 0; z < y; z++) {
            buf[z] = (unsigned char)(z & 255);
         }
         outlen = sizeof(md);
         if ((err = hash_memory(x, buf, y, md, &outlen)) != CRYPT_OK) {
            printf("hash_memory error: %s\n", error_to_string(err));
            exit(EXIT_FAILURE);
         }
         fprintf(out, "%3lu: ", y);
         for (z = 0; z < outlen; z++) {
            fprintf(out, "%02X", md[z]);
         }
         fprintf(out, "\n");
      }
      fprintf(out, "\n");
      XFREE(buf);
   }
   fclose(out);
}

void cipher_gen(void)
{
   unsigned char *key, pt[MAXBLOCKSIZE];
   unsigned long x, y, z, w;
   int err, kl, lastkl;
   FILE *out;
   symmetric_key skey;
   
   out = fopen("cipher_tv.txt", "w");
   
   fprintf(out, 
"Cipher Test Vectors\n\nThese are test encryptions with key of nn bytes '00 01 02 03 .. (nn-1)' and original PT of the same style.\n"
"The output of step N is used as the key and plaintext for step N+1 (key bytes repeated as required to fill the key)\n\n");
                   
   for (x = 0; cipher_descriptor[x].name != NULL; x++) {
      fprintf(out, "Cipher: %s\n", cipher_descriptor[x].name);
      
      /* three modes, smallest, medium, large keys */
      lastkl = 10000;
      for (y = 0; y < 3; y++) {
         switch (y) {
            case 0: kl = cipher_descriptor[x].min_key_length; break;
            case 1: kl = (cipher_descriptor[x].min_key_length + cipher_descriptor[x].max_key_length)/2; break;
            case 2: kl = cipher_descriptor[x].max_key_length; break;
         }
         if ((err = cipher_descriptor[x].keysize(&kl)) != CRYPT_OK) {
            printf("keysize error: %s\n", error_to_string(err));
            exit(EXIT_FAILURE);
         }
         if (kl == lastkl) break;
         lastkl = kl;
         fprintf(out, "Key Size: %d bytes\n", kl);

         key = XMALLOC(kl);
         if (key == NULL) {
            perror("can't malloc memory");
            exit(EXIT_FAILURE);
         }

         for (z = 0; (int)z < kl; z++) {
             key[z] = (unsigned char)z;
         }
         if ((err = cipher_descriptor[x].setup(key, kl, 0, &skey)) != CRYPT_OK) {
            printf("setup error: %s\n", error_to_string(err));
            exit(EXIT_FAILURE);
         }
         
         for (z = 0; (int)z < cipher_descriptor[x].block_length; z++) {
            pt[z] = (unsigned char)z;
         }
         for (w = 0; w < 50; w++) {
             cipher_descriptor[x].ecb_encrypt(pt, pt, &skey);
             fprintf(out, "%2lu: ", w);
             for (z = 0; (int)z < cipher_descriptor[x].block_length; z++) {
                fprintf(out, "%02X", pt[z]);
             }
             fprintf(out, "\n");

             /* reschedule a new key */
             for (z = 0; z < (unsigned long)kl; z++) {
                 key[z] = pt[z % cipher_descriptor[x].block_length];
             }
             if ((err = cipher_descriptor[x].setup(key, kl, 0, &skey)) != CRYPT_OK) {
                printf("cipher setup2 error: %s\n", error_to_string(err));
                exit(EXIT_FAILURE);
             }
         }
         fprintf(out, "\n");
         XFREE(key);
     }
     fprintf(out, "\n");
  }
  fclose(out);
}  

void hmac_gen(void)
{
   unsigned char key[MAXBLOCKSIZE], output[MAXBLOCKSIZE], *input;
   int x, y, z, err;
   FILE *out;
   unsigned long len;
  
   out = fopen("hmac_tv.txt", "w");

   fprintf(out, 
"HMAC Tests.  In these tests messages of N bytes long (00,01,02,...,NN-1) are HMACed.  The initial key is\n"
"of the same format (the same length as the HASH output size).  The HMAC key in step N+1 is the HMAC output of\n"
"step N.\n\n");

   for (x = 0; hash_descriptor[x].name != NULL; x++) {
      fprintf(out, "HMAC-%s\n", hash_descriptor[x].name);
      
      /* initial key */
      for (y = 0; y < (int)hash_descriptor[x].hashsize; y++) {
          key[y] = (y&255);
      }

      input = XMALLOC(hash_descriptor[x].blocksize * 2 + 1);
      if (input == NULL) {
         perror("Can't malloc memory");
         exit(EXIT_FAILURE);
      }
      
      for (y = 0; y <= (int)(hash_descriptor[x].blocksize * 2); y++) {
         for (z = 0; z < y; z++) {
            input[z] = (unsigned char)(z & 255);
         }
         len = sizeof(output);
         if ((err = hmac_memory(x, key, hash_descriptor[x].hashsize, input, y, output, &len)) != CRYPT_OK) {
            printf("Error hmacing: %s\n", error_to_string(err));
            exit(EXIT_FAILURE);
         }
         fprintf(out, "%3d: ", y);
         for (z = 0; z <(int) len; z++) {
            fprintf(out, "%02X", output[z]);
         }
         fprintf(out, "\n");

         /* forward the key */
         memcpy(key, output, hash_descriptor[x].hashsize);
      }
      XFREE(input);
      fprintf(out, "\n");
   }
   fclose(out);
}
   
void omac_gen(void)
{
   unsigned char key[MAXBLOCKSIZE], output[MAXBLOCKSIZE], input[MAXBLOCKSIZE*2+2];
   int err, x, y, z, kl;
   FILE *out;
   unsigned long len;
  
   out = fopen("omac_tv.txt", "w");

   fprintf(out, 
"OMAC Tests.  In these tests messages of N bytes long (00,01,02,...,NN-1) are OMAC'ed.  The initial key is\n"
"of the same format (length specified per cipher).  The OMAC key in step N+1 is the OMAC output of\n"
"step N (repeated as required to fill the array).\n\n");

   for (x = 0; cipher_descriptor[x].name != NULL; x++) {
      kl = cipher_descriptor[x].block_length;

      /* skip ciphers which do not have 64 or 128 bit block sizes */
      if (kl != 8 && kl != 16) continue;

      if (cipher_descriptor[x].keysize(&kl) != CRYPT_OK) {
         kl = cipher_descriptor[x].max_key_length;
      }
      fprintf(out, "OMAC-%s (%d byte key)\n", cipher_descriptor[x].name, kl);
      
      /* initial key/block */
      for (y = 0; y < kl; y++) {
          key[y] = (y & 255);
      }
      
      for (y = 0; y <= (int)(cipher_descriptor[x].block_length*2); y++) {
         for (z = 0; z < y; z++) {
            input[z] = (unsigned char)(z & 255);
         }
         len = sizeof(output);
         if ((err = omac_memory(x, key, kl, input, y, output, &len)) != CRYPT_OK) {
            printf("Error omacing: %s\n", error_to_string(err));
            exit(EXIT_FAILURE);
         }
         fprintf(out, "%3d: ", y);
         for (z = 0; z <(int)len; z++) {
            fprintf(out, "%02X", output[z]);
         }
         fprintf(out, "\n");

         /* forward the key */
         for (z = 0; z < kl; z++) {
             key[z] = output[z % len];
         }
      }
      fprintf(out, "\n");
   }
   fclose(out);
}

void pmac_gen(void)
{
   unsigned char key[MAXBLOCKSIZE], output[MAXBLOCKSIZE], input[MAXBLOCKSIZE*2+2];
   int err, x, y, z, kl;
   FILE *out;
   unsigned long len;
  
   out = fopen("pmac_tv.txt", "w");

   fprintf(out, 
"PMAC Tests.  In these tests messages of N bytes long (00,01,02,...,NN-1) are OMAC'ed.  The initial key is\n"
"of the same format (length specified per cipher).  The OMAC key in step N+1 is the OMAC output of\n"
"step N (repeated as required to fill the array).\n\n");

   for (x = 0; cipher_descriptor[x].name != NULL; x++) {
      kl = cipher_descriptor[x].block_length;

      /* skip ciphers which do not have 64 or 128 bit block sizes */
      if (kl != 8 && kl != 16) continue;

      if (cipher_descriptor[x].keysize(&kl) != CRYPT_OK) {
         kl = cipher_descriptor[x].max_key_length;
      }
      fprintf(out, "PMAC-%s (%d byte key)\n", cipher_descriptor[x].name, kl);
      
      /* initial key/block */
      for (y = 0; y < kl; y++) {
          key[y] = (y & 255);
      }
      
      for (y = 0; y <= (int)(cipher_descriptor[x].block_length*2); y++) {
         for (z = 0; z < y; z++) {
            input[z] = (unsigned char)(z & 255);
         }
         len = sizeof(output);
         if ((err = pmac_memory(x, key, kl, input, y, output, &len)) != CRYPT_OK) {
            printf("Error omacing: %s\n", error_to_string(err));
            exit(EXIT_FAILURE);
         }
         fprintf(out, "%3d: ", y);
         for (z = 0; z <(int)len; z++) {
            fprintf(out, "%02X", output[z]);
         }
         fprintf(out, "\n");

         /* forward the key */
         for (z = 0; z < kl; z++) {
             key[z] = output[z % len];
         }
      }
      fprintf(out, "\n");
   }
   fclose(out);
}

void eax_gen(void)
{
   int err, kl, x, y1, z;
   FILE *out;
   unsigned char key[MAXBLOCKSIZE], nonce[MAXBLOCKSIZE*2], header[MAXBLOCKSIZE*2], 
                 plaintext[MAXBLOCKSIZE*2], tag[MAXBLOCKSIZE];
   unsigned long len;

   out = fopen("eax_tv.txt", "w");
   fprintf(out, "EAX Test Vectors.  Uses the 00010203...NN-1 pattern for header/nonce/plaintext/key.  The outputs\n"
                "are of the form ciphertext,tag for a given NN.  The key for step N>1 is the tag of the previous\n"
                "step repeated sufficiently.\n\n");

   for (x = 0; cipher_descriptor[x].name != NULL; x++) {
      kl = cipher_descriptor[x].block_length;

      /* skip ciphers which do not have 64 or 128 bit block sizes */
      if (kl != 8 && kl != 16) continue;

      if (cipher_descriptor[x].keysize(&kl) != CRYPT_OK) {
         kl = cipher_descriptor[x].max_key_length;
      }
      fprintf(out, "EAX-%s (%d byte key)\n", cipher_descriptor[x].name, kl);

      /* the key */
      for (z = 0; z < kl; z++) {
          key[z] = (z & 255);
      }
      
      for (y1 = 0; y1 <= (int)(cipher_descriptor[x].block_length*2); y1++){
         for (z = 0; z < y1; z++) {
            plaintext[z] = (unsigned char)(z & 255);
            nonce[z]     = (unsigned char)(z & 255);
            header[z]    = (unsigned char)(z & 255);
         }
         len = sizeof(tag);
         if ((err = eax_encrypt_authenticate_memory(x, key, kl, nonce, y1, header, y1, plaintext, y1, plaintext, tag, &len)) != CRYPT_OK) {
            printf("Error EAX'ing: %s\n", error_to_string(err));
            exit(EXIT_FAILURE);
         }
         fprintf(out, "%3d: ", y1);
         for (z = 0; z < y1; z++) {
            fprintf(out, "%02X", plaintext[z]);
         }
         fprintf(out, ", ");
         for (z = 0; z <(int)len; z++) {
            fprintf(out, "%02X", tag[z]);
         }
         fprintf(out, "\n");

         /* forward the key */
         for (z = 0; z < kl; z++) {
             key[z] = tag[z % len];
         }
      }
      fprintf(out, "\n");
   }
   fclose(out);
}

void ocb_gen(void)
{
   int err, kl, x, y1, z;
   FILE *out;
   unsigned char key[MAXBLOCKSIZE], nonce[MAXBLOCKSIZE*2], 
                 plaintext[MAXBLOCKSIZE*2], tag[MAXBLOCKSIZE];
   unsigned long len;

   out = fopen("ocb_tv.txt", "w");
   fprintf(out, "OCB Test Vectors.  Uses the 00010203...NN-1 pattern for nonce/plaintext/key.  The outputs\n"
                "are of the form ciphertext,tag for a given NN.  The key for step N>1 is the tag of the previous\n"
                "step repeated sufficiently.  The nonce is fixed throughout.\n\n");

   for (x = 0; cipher_descriptor[x].name != NULL; x++) {
      kl = cipher_descriptor[x].block_length;

      /* skip ciphers which do not have 64 or 128 bit block sizes */
      if (kl != 8 && kl != 16) continue;

      if (cipher_descriptor[x].keysize(&kl) != CRYPT_OK) {
         kl = cipher_descriptor[x].max_key_length;
      }
      fprintf(out, "OCB-%s (%d byte key)\n", cipher_descriptor[x].name, kl);

      /* the key */
      for (z = 0; z < kl; z++) {
          key[z] = (z & 255);
      }

      /* fixed nonce */
      for (z = 0; z < cipher_descriptor[x].block_length; z++) {
          nonce[z] = z;
      }
      
      for (y1 = 0; y1 <= (int)(cipher_descriptor[x].block_length*2); y1++){
         for (z = 0; z < y1; z++) {
            plaintext[z] = (unsigned char)(z & 255);
         }
         len = sizeof(tag);
         if ((err = ocb_encrypt_authenticate_memory(x, key, kl, nonce, plaintext, y1, plaintext, tag, &len)) != CRYPT_OK) {
            printf("Error OCB'ing: %s\n", error_to_string(err));
            exit(EXIT_FAILURE);
         }
         fprintf(out, "%3d: ", y1);
         for (z = 0; z < y1; z++) {
            fprintf(out, "%02X", plaintext[z]);
         }
         fprintf(out, ", ");
         for (z = 0; z <(int)len; z++) {
            fprintf(out, "%02X", tag[z]);
         }
         fprintf(out, "\n");

         /* forward the key */
         for (z = 0; z < kl; z++) {
             key[z] = tag[z % len];
         }
      }
      fprintf(out, "\n");
   }
   fclose(out);
}


void ccm_gen(void)
{
   int err, kl, x, y1, z;
   FILE *out;
   unsigned char key[MAXBLOCKSIZE], nonce[MAXBLOCKSIZE*2], 
                 plaintext[MAXBLOCKSIZE*2], tag[MAXBLOCKSIZE];
   unsigned long len;

   out = fopen("ccm_tv.txt", "w");
   fprintf(out, "CCM Test Vectors.  Uses the 00010203...NN-1 pattern for nonce/header/plaintext/key.  The outputs\n"
                "are of the form ciphertext,tag for a given NN.  The key for step N>1 is the tag of the previous\n"
                "step repeated sufficiently.  The nonce is fixed throughout at 13 bytes 000102...\n\n");

   for (x = 0; cipher_descriptor[x].name != NULL; x++) {
      kl = cipher_descriptor[x].block_length;

      /* skip ciphers which do not have 128 bit block sizes */
      if (kl != 16) continue;

      if (cipher_descriptor[x].keysize(&kl) != CRYPT_OK) {
         kl = cipher_descriptor[x].max_key_length;
      }
      fprintf(out, "CCM-%s (%d byte key)\n", cipher_descriptor[x].name, kl);

      /* the key */
      for (z = 0; z < kl; z++) {
          key[z] = (z & 255);
      }

      /* fixed nonce */
      for (z = 0; z < cipher_descriptor[x].block_length; z++) {
          nonce[z] = z;
      }
      
      for (y1 = 0; y1 <= (int)(cipher_descriptor[x].block_length*2); y1++){
         for (z = 0; z < y1; z++) {
            plaintext[z] = (unsigned char)(z & 255);
         }
         len = sizeof(tag);
         if ((err = ccm_memory(x, key, kl, NULL, nonce, 13, plaintext, y1, plaintext, y1, plaintext, tag, &len, CCM_ENCRYPT)) != CRYPT_OK) {
            printf("Error CCM'ing: %s\n", error_to_string(err));
            exit(EXIT_FAILURE);
         }
         fprintf(out, "%3d: ", y1);
         for (z = 0; z < y1; z++) {
            fprintf(out, "%02X", plaintext[z]);
         }
         fprintf(out, ", ");
         for (z = 0; z <(int)len; z++) {
            fprintf(out, "%02X", tag[z]);
         }
         fprintf(out, "\n");

         /* forward the key */
         for (z = 0; z < kl; z++) {
             key[z] = tag[z % len];
         }
      }
      fprintf(out, "\n");
   }
   fclose(out);
}

void gcm_gen(void)
{
   int err, kl, x, y1, z;
   FILE *out;
   unsigned char key[MAXBLOCKSIZE], plaintext[MAXBLOCKSIZE*2], tag[MAXBLOCKSIZE];
   unsigned long len;

   out = fopen("gcm_tv.txt", "w");
   fprintf(out, "GCM Test Vectors.  Uses the 00010203...NN-1 pattern for nonce/header/plaintext/key.  The outputs\n"
                "are of the form ciphertext,tag for a given NN.  The key for step N>1 is the tag of the previous\n"
                "step repeated sufficiently.  The nonce is fixed throughout at 13 bytes 000102...\n\n");

   for (x = 0; cipher_descriptor[x].name != NULL; x++) {
      kl = cipher_descriptor[x].block_length;

      /* skip ciphers which do not have 128 bit block sizes */
      if (kl != 16) continue;

      if (cipher_descriptor[x].keysize(&kl) != CRYPT_OK) {
         kl = cipher_descriptor[x].max_key_length;
      }
      fprintf(out, "GCM-%s (%d byte key)\n", cipher_descriptor[x].name, kl);

      /* the key */
      for (z = 0; z < kl; z++) {
          key[z] = (z & 255);
      }
     
      for (y1 = 0; y1 <= (int)(cipher_descriptor[x].block_length*2); y1++){
         for (z = 0; z < y1; z++) {
            plaintext[z] = (unsigned char)(z & 255);
         }
         len = sizeof(tag);
         if ((err = gcm_memory(x, key, kl, plaintext, y1, plaintext, y1, plaintext, y1, plaintext, tag, &len, GCM_ENCRYPT)) != CRYPT_OK) {
            printf("Error GCM'ing: %s\n", error_to_string(err));
            exit(EXIT_FAILURE);
         }
         fprintf(out, "%3d: ", y1);
         for (z = 0; z < y1; z++) {
            fprintf(out, "%02X", plaintext[z]);
         }
         fprintf(out, ", ");
         for (z = 0; z <(int)len; z++) {
            fprintf(out, "%02X", tag[z]);
         }
         fprintf(out, "\n");

         /* forward the key */
         for (z = 0; z < kl; z++) {
             key[z] = tag[z % len];
         }
      }
      fprintf(out, "\n");
   }
   fclose(out);
}

void base64_gen(void)
{
   FILE *out;
   unsigned char dst[256], src[32];
   unsigned long x, y, len;
   
   out = fopen("base64_tv.txt", "w");
   fprintf(out, "Base64 vectors.  These are the base64 encodings of the strings 00,01,02...NN-1\n\n");
   for (x = 0; x <= 32; x++) {
       for (y = 0; y < x; y++) {
           src[y] = y;
       }
       len = sizeof(dst);
       base64_encode(src, x, dst, &len);
       fprintf(out, "%2lu: %s\n", x, dst);
   }
   fclose(out);
}

void math_gen(void)
{
}

void ecc_gen(void)
{
   FILE         *out;
   unsigned char str[512];
   void          *k, *order, *modulus;
   ecc_point    *G, *R;
   int           x;

   out = fopen("ecc_tv.txt", "w");
   fprintf(out, "ecc vectors.  These are for kG for k=1,3,9,27,...,3**n until k > order of the curve outputs are <k,x,y> triplets\n\n");
   G = ltc_ecc_new_point();
   R = ltc_ecc_new_point();
   mp_init(&k);
   mp_init(&order);
   mp_init(&modulus);

   for (x = 0; ltc_ecc_sets[x].size != 0; x++) {
        fprintf(out, "ECC-%d\n", ltc_ecc_sets[x].size*8);
        mp_set(k, 1);

        mp_read_radix(order,   (char *)ltc_ecc_sets[x].order, 16);
        mp_read_radix(modulus, (char *)ltc_ecc_sets[x].prime, 16);
        mp_read_radix(G->x,    (char *)ltc_ecc_sets[x].Gx,    16);
        mp_read_radix(G->y,    (char *)ltc_ecc_sets[x].Gy,    16);
        mp_set(G->z, 1);  

        while (mp_cmp(k, order) == LTC_MP_LT) {
            ltc_mp.ecc_ptmul(k, G, R, modulus, 1);
            mp_tohex(k,    (char*)str); fprintf(out, "%s, ", (char*)str);
            mp_tohex(R->x, (char*)str); fprintf(out, "%s, ", (char*)str);
            mp_tohex(R->y, (char*)str); fprintf(out, "%s\n", (char*)str);
            mp_mul_d(k, 3, k);
        }
   }
   mp_clear_multi(k, order, modulus, NULL);
   ltc_ecc_del_point(G);
   ltc_ecc_del_point(R);
   fclose(out);
}

void lrw_gen(void)
{
   FILE *out;
   unsigned char tweak[16], key[16], iv[16], buf[1024];
   int x, y, err;
   symmetric_LRW lrw;
   
   /* initialize default key and tweak */
   for (x = 0; x < 16; x++) {
      tweak[x] = key[x] = iv[x] = x;
   }

   out = fopen("lrw_tv.txt", "w");
   for (x = 16; x < (int)(sizeof(buf)); x += 16) {
       if ((err = lrw_start(find_cipher("aes"), iv, key, 16, tweak, 0, &lrw)) != CRYPT_OK) {
          fprintf(stderr, "Error starting LRW-AES: %s\n", error_to_string(err));
          exit(EXIT_FAILURE);
       }

       /* encrypt incremental */
       for (y = 0; y < x; y++) {
           buf[y] = y & 255;
       }

       if ((err = lrw_encrypt(buf, buf, x, &lrw)) != CRYPT_OK) {
          fprintf(stderr, "Error encrypting with LRW-AES: %s\n", error_to_string(err));
          exit(EXIT_FAILURE);
       }

       /* display it */
       fprintf(out, "%d:", x);
       for (y = 0; y < x; y++) {
          fprintf(out, "%02x", buf[y]);
       }
       fprintf(out, "\n");

       /* reset IV */
       if ((err = lrw_setiv(iv, 16, &lrw)) != CRYPT_OK) {
          fprintf(stderr, "Error setting IV: %s\n", error_to_string(err));
          exit(EXIT_FAILURE);
       }

       /* copy new tweak, iv and key */
       for (y = 0; y < 16; y++) {
          key[y]   = buf[y];
          iv[y]    = buf[(y+16)%x];
          tweak[y] = buf[(y+32)%x];
       }

       if ((err = lrw_decrypt(buf, buf, x, &lrw)) != CRYPT_OK) {
          fprintf(stderr, "Error decrypting with LRW-AES: %s\n", error_to_string(err));
          exit(EXIT_FAILURE);
       }

       /* display it */
       fprintf(out, "%d:", x);
       for (y = 0; y < x; y++) {
          fprintf(out, "%02x", buf[y]);
       }
       fprintf(out, "\n");
       lrw_done(&lrw);
   }
   fclose(out);
}      

int main(void)
{
   reg_algs();
   printf("Generating hash   vectors..."); fflush(stdout); hash_gen();   printf("done\n");
   printf("Generating cipher vectors..."); fflush(stdout); cipher_gen(); printf("done\n");
   printf("Generating HMAC   vectors..."); fflush(stdout); hmac_gen();   printf("done\n");
   printf("Generating OMAC   vectors..."); fflush(stdout); omac_gen();   printf("done\n");
   printf("Generating PMAC   vectors..."); fflush(stdout); pmac_gen();   printf("done\n");
   printf("Generating EAX    vectors..."); fflush(stdout); eax_gen();    printf("done\n");
   printf("Generating OCB    vectors..."); fflush(stdout); ocb_gen();    printf("done\n");
   printf("Generating CCM    vectors..."); fflush(stdout); ccm_gen();    printf("done\n");
   printf("Generating GCM    vectors..."); fflush(stdout); gcm_gen();    printf("done\n");
   printf("Generating BASE64 vectors..."); fflush(stdout); base64_gen(); printf("done\n");
   printf("Generating MATH   vectors..."); fflush(stdout); math_gen();   printf("done\n");
   printf("Generating ECC    vectors..."); fflush(stdout); ecc_gen();    printf("done\n");
   printf("Generating LRW    vectors..."); fflush(stdout); lrw_gen();    printf("done\n");
   return 0;
}

/* $Source: /cvs/libtom/libtomcrypt/demos/tv_gen.c,v $ */
/* $Revision: 1.15 $ */
/* $Date: 2006/06/09 22:10:27 $ */