Mercurial > dropbear
view libtommath/etc/prime.512 @ 1485:3a916b945185
Use an explicit matrix instead, avoid bad clang combinations etc
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Sat, 10 Feb 2018 18:57:44 +0800 |
parents | eed26cff980b |
children |
line wrap: on
line source
Enter # of bits: Enter number of bases to try (1 to 8): Certificate of primality for: 85933926807634727 A == 253758023 B == 169322581 G == 5 ---------------------------------------------------------------- Certificate of primality for: 23930198825086241462113799 A == 85933926807634727 B == 139236037 G == 11 ---------------------------------------------------------------- Certificate of primality for: 6401844647261612602378676572510019 A == 23930198825086241462113799 B == 133760791 G == 2 ---------------------------------------------------------------- Certificate of primality for: 269731366027728777712034888684015329354259 A == 6401844647261612602378676572510019 B == 21066691 G == 2 ---------------------------------------------------------------- Certificate of primality for: 37942338209025571690075025099189467992329684223707 A == 269731366027728777712034888684015329354259 B == 70333567 G == 2 ---------------------------------------------------------------- Certificate of primality for: 15306904714258982484473490774101705363308327436988160248323 A == 37942338209025571690075025099189467992329684223707 B == 201712723 G == 2 ---------------------------------------------------------------- Certificate of primality for: 1616744757018513392810355191503853040357155275733333124624513530099 A == 15306904714258982484473490774101705363308327436988160248323 B == 52810963 G == 2 ---------------------------------------------------------------- Certificate of primality for: 464222094814208047161771036072622485188658077940154689939306386289983787983 A == 1616744757018513392810355191503853040357155275733333124624513530099 B == 143566909 G == 5 ---------------------------------------------------------------- Certificate of primality for: 187429931674053784626487560729643601208757374994177258429930699354770049369025096447 A == 464222094814208047161771036072622485188658077940154689939306386289983787983 B == 201875281 G == 5 ---------------------------------------------------------------- Certificate of primality for: 100579220846502621074093727119851331775052664444339632682598589456666938521976625305832917563 A == 187429931674053784626487560729643601208757374994177258429930699354770049369025096447 B == 268311523 G == 2 ---------------------------------------------------------------- Certificate of primality for: 1173616081309758475197022137833792133815753368965945885089720153370737965497134878651384030219765163 A == 100579220846502621074093727119851331775052664444339632682598589456666938521976625305832917563 B == 5834287 G == 2 ---------------------------------------------------------------- Certificate of primality for: 191456913489905913185935197655672585713573070349044195411728114905691721186574907738081340754373032735283623 A == 1173616081309758475197022137833792133815753368965945885089720153370737965497134878651384030219765163 B == 81567097 G == 5 ---------------------------------------------------------------- Certificate of primality for: 57856530489201750164178576399448868489243874083056587683743345599898489554401618943240901541005080049321706789987519 A == 191456913489905913185935197655672585713573070349044195411728114905691721186574907738081340754373032735283623 B == 151095433 G == 7 ---------------------------------------------------------------- Certificate of primality for: 13790529750452576698109671710773784949185621244122040804792403407272729038377767162233653248852099545134831722512085881814803 A == 57856530489201750164178576399448868489243874083056587683743345599898489554401618943240901541005080049321706789987519 B == 119178679 G == 2 ---------------------------------------------------------------- Certificate of primality for: 7075985989000817742677547821106534174334812111605018857703825637170140040509067704269696198231266351631132464035671858077052876058979 A == 13790529750452576698109671710773784949185621244122040804792403407272729038377767162233653248852099545134831722512085881814803 B == 256552363 G == 2 ---------------------------------------------------------------- Certificate of primality for: 1227273006232588072907488910282307435921226646895131225407452056677899411162892829564455154080310937471747140942360789623819327234258162420463 A == 7075985989000817742677547821106534174334812111605018857703825637170140040509067704269696198231266351631132464035671858077052876058979 B == 86720989 G == 5 ---------------------------------------------------------------- Certificate of primality for: 446764896913554613686067036908702877942872355053329937790398156069936255759889884246832779737114032666318220500106499161852193765380831330106375235763 A == 1227273006232588072907488910282307435921226646895131225407452056677899411162892829564455154080310937471747140942360789623819327234258162420463 B == 182015287 G == 2 ---------------------------------------------------------------- Certificate of primality for: 5290203010849586596974953717018896543907195901082056939587768479377028575911127944611236020459652034082251335583308070846379514569838984811187823420951275243 A == 446764896913554613686067036908702877942872355053329937790398156069936255759889884246832779737114032666318220500106499161852193765380831330106375235763 B == 5920567 G == 2 ---------------------------------------------------------------- Took 3454 ticks, 521 bits P == 5290203010849586596974953717018896543907195901082056939587768479377028575911127944611236020459652034082251335583308070846379514569838984811187823420951275243 Q == 446764896913554613686067036908702877942872355053329937790398156069936255759889884246832779737114032666318220500106499161852193765380831330106375235763