Mercurial > dropbear
view libtomcrypt/src/pk/dsa/dsa_verify_key.c @ 1672:3a97f14c0235
Add Chacha20-Poly1305, AES128-GCM and AES256-GCM support (#93)
* Add Chacha20-Poly1305 authenticated encryption
* Add general AEAD approach.
* Add [email protected] algo using LibTomCrypt chacha and
poly1305 routines.
Chacha20-Poly1305 is generally faster than AES256 on CPU w/o dedicated
AES instructions, having the same key size.
Compiling in will add ~5,5kB to binary size on x86-64.
function old new delta
chacha_crypt - 1397 +1397
_poly1305_block - 608 +608
poly1305_done - 595 +595
dropbear_chachapoly_crypt - 457 +457
.rodata 26976 27392 +416
poly1305_process - 290 +290
poly1305_init - 221 +221
chacha_setup - 218 +218
encrypt_packet 1068 1270 +202
dropbear_chachapoly_getlength - 147 +147
decrypt_packet 756 897 +141
chacha_ivctr64 - 137 +137
read_packet 543 637 +94
dropbear_chachapoly_start - 94 +94
read_kex_algos 792 880 +88
chacha_keystream - 69 +69
dropbear_mode_chachapoly - 48 +48
sshciphers 280 320 +40
dropbear_mode_none 24 48 +24
dropbear_mode_ctr 24 48 +24
dropbear_mode_cbc 24 48 +24
dropbear_chachapoly_mac - 24 +24
dropbear_chachapoly - 24 +24
gen_new_keys 848 854 +6
------------------------------------------------------------------------------
(add/remove: 14/0 grow/shrink: 10/0 up/down: 5388/0) Total: 5388 bytes
* Add AES128-GCM and AES256-GCM authenticated encryption
* Add general AES-GCM mode.
* Add [email protected] and [email protected] algo using
LibTomCrypt gcm routines.
AES-GCM is combination of AES CTR mode and GHASH, slower than AES-CTR on
CPU w/o dedicated AES/GHASH instructions therefore disabled by default.
Compiling in will add ~6kB to binary size on x86-64.
function old new delta
gcm_process - 1060 +1060
.rodata 26976 27808 +832
gcm_gf_mult - 820 +820
gcm_add_aad - 660 +660
gcm_shift_table - 512 +512
gcm_done - 471 +471
gcm_add_iv - 384 +384
gcm_init - 347 +347
dropbear_gcm_crypt - 309 +309
encrypt_packet 1068 1270 +202
decrypt_packet 756 897 +141
gcm_reset - 118 +118
read_packet 543 637 +94
read_kex_algos 792 880 +88
sshciphers 280 360 +80
gcm_mult_h - 80 +80
dropbear_gcm_start - 62 +62
dropbear_mode_gcm - 48 +48
dropbear_mode_none 24 48 +24
dropbear_mode_ctr 24 48 +24
dropbear_mode_cbc 24 48 +24
dropbear_ghash - 24 +24
dropbear_gcm_getlength - 24 +24
gen_new_keys 848 854 +6
------------------------------------------------------------------------------
(add/remove: 14/0 grow/shrink: 10/0 up/down: 6434/0) Total: 6434 bytes
author | Vladislav Grishenko <themiron@users.noreply.github.com> |
---|---|
date | Mon, 25 May 2020 20:50:25 +0500 |
parents | 6dba84798cd5 |
children |
line wrap: on
line source
/* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. */ #include "tomcrypt.h" /** @file dsa_verify_key.c DSA implementation, verify a key, Tom St Denis */ #ifdef LTC_MDSA /** Validate a DSA key Yeah, this function should've been called dsa_validate_key() in the first place and for compat-reasons we keep it as it was (for now). @param key The key to validate @param stat [out] Result of test, 1==valid, 0==invalid @return CRYPT_OK if successful */ int dsa_verify_key(dsa_key *key, int *stat) { int err; err = dsa_int_validate_primes(key, stat); if (err != CRYPT_OK || *stat == 0) return err; err = dsa_int_validate_pqg(key, stat); if (err != CRYPT_OK || *stat == 0) return err; return dsa_int_validate_xy(key, stat); } /** Non-complex part (no primality testing) of the validation of DSA params (p, q, g) @param key The key to validate @param stat [out] Result of test, 1==valid, 0==invalid @return CRYPT_OK if successful */ int dsa_int_validate_pqg(dsa_key *key, int *stat) { void *tmp1, *tmp2; int err; LTC_ARGCHK(key != NULL); LTC_ARGCHK(stat != NULL); *stat = 0; /* check q-order */ if ( key->qord >= LTC_MDSA_MAX_GROUP || key->qord <= 15 || (unsigned long)key->qord >= mp_unsigned_bin_size(key->p) || (mp_unsigned_bin_size(key->p) - key->qord) >= LTC_MDSA_DELTA ) { return CRYPT_OK; } /* FIPS 186-4 chapter 4.1: 1 < g < p */ if (mp_cmp_d(key->g, 1) != LTC_MP_GT || mp_cmp(key->g, key->p) != LTC_MP_LT) { return CRYPT_OK; } if ((err = mp_init_multi(&tmp1, &tmp2, NULL)) != CRYPT_OK) { return err; } /* FIPS 186-4 chapter 4.1: q is a divisor of (p - 1) */ if ((err = mp_sub_d(key->p, 1, tmp1)) != CRYPT_OK) { goto error; } if ((err = mp_div(tmp1, key->q, tmp1, tmp2)) != CRYPT_OK) { goto error; } if (mp_iszero(tmp2) != LTC_MP_YES) { err = CRYPT_OK; goto error; } /* FIPS 186-4 chapter 4.1: g is a generator of a subgroup of order q in * the multiplicative group of GF(p) - so we make sure that g^q mod p = 1 */ if ((err = mp_exptmod(key->g, key->q, key->p, tmp1)) != CRYPT_OK) { goto error; } if (mp_cmp_d(tmp1, 1) != LTC_MP_EQ) { err = CRYPT_OK; goto error; } err = CRYPT_OK; *stat = 1; error: mp_clear_multi(tmp2, tmp1, NULL); return err; } /** Primality testing of DSA params p and q @param key The key to validate @param stat [out] Result of test, 1==valid, 0==invalid @return CRYPT_OK if successful */ int dsa_int_validate_primes(dsa_key *key, int *stat) { int err, res; *stat = 0; LTC_ARGCHK(key != NULL); LTC_ARGCHK(stat != NULL); /* key->q prime? */ if ((err = mp_prime_is_prime(key->q, LTC_MILLER_RABIN_REPS, &res)) != CRYPT_OK) { return err; } if (res == LTC_MP_NO) { return CRYPT_OK; } /* key->p prime? */ if ((err = mp_prime_is_prime(key->p, LTC_MILLER_RABIN_REPS, &res)) != CRYPT_OK) { return err; } if (res == LTC_MP_NO) { return CRYPT_OK; } *stat = 1; return CRYPT_OK; } /** Validation of a DSA key (x and y values) @param key The key to validate @param stat [out] Result of test, 1==valid, 0==invalid @return CRYPT_OK if successful */ int dsa_int_validate_xy(dsa_key *key, int *stat) { void *tmp; int err; *stat = 0; LTC_ARGCHK(key != NULL); LTC_ARGCHK(stat != NULL); /* 1 < y < p-1 */ if ((err = mp_init(&tmp)) != CRYPT_OK) { return err; } if ((err = mp_sub_d(key->p, 1, tmp)) != CRYPT_OK) { goto error; } if (mp_cmp_d(key->y, 1) != LTC_MP_GT || mp_cmp(key->y, tmp) != LTC_MP_LT) { err = CRYPT_OK; goto error; } if (key->type == PK_PRIVATE) { /* FIPS 186-4 chapter 4.1: 0 < x < q */ if (mp_cmp_d(key->x, 0) != LTC_MP_GT || mp_cmp(key->x, key->q) != LTC_MP_LT) { err = CRYPT_OK; goto error; } /* FIPS 186-4 chapter 4.1: y = g^x mod p */ if ((err = mp_exptmod(key->g, key->x, key->p, tmp)) != CRYPT_OK) { goto error; } if (mp_cmp(tmp, key->y) != LTC_MP_EQ) { err = CRYPT_OK; goto error; } } else { /* with just a public key we cannot test y = g^x mod p therefore we * only test that y^q mod p = 1, which makes sure y is in g^x mod p */ if ((err = mp_exptmod(key->y, key->q, key->p, tmp)) != CRYPT_OK) { goto error; } if (mp_cmp_d(tmp, 1) != LTC_MP_EQ) { err = CRYPT_OK; goto error; } } err = CRYPT_OK; *stat = 1; error: mp_clear(tmp); return err; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */