Mercurial > dropbear
view libtommath/bn_mp_div_d.c @ 1672:3a97f14c0235
Add Chacha20-Poly1305, AES128-GCM and AES256-GCM support (#93)
* Add Chacha20-Poly1305 authenticated encryption
* Add general AEAD approach.
* Add [email protected] algo using LibTomCrypt chacha and
poly1305 routines.
Chacha20-Poly1305 is generally faster than AES256 on CPU w/o dedicated
AES instructions, having the same key size.
Compiling in will add ~5,5kB to binary size on x86-64.
function old new delta
chacha_crypt - 1397 +1397
_poly1305_block - 608 +608
poly1305_done - 595 +595
dropbear_chachapoly_crypt - 457 +457
.rodata 26976 27392 +416
poly1305_process - 290 +290
poly1305_init - 221 +221
chacha_setup - 218 +218
encrypt_packet 1068 1270 +202
dropbear_chachapoly_getlength - 147 +147
decrypt_packet 756 897 +141
chacha_ivctr64 - 137 +137
read_packet 543 637 +94
dropbear_chachapoly_start - 94 +94
read_kex_algos 792 880 +88
chacha_keystream - 69 +69
dropbear_mode_chachapoly - 48 +48
sshciphers 280 320 +40
dropbear_mode_none 24 48 +24
dropbear_mode_ctr 24 48 +24
dropbear_mode_cbc 24 48 +24
dropbear_chachapoly_mac - 24 +24
dropbear_chachapoly - 24 +24
gen_new_keys 848 854 +6
------------------------------------------------------------------------------
(add/remove: 14/0 grow/shrink: 10/0 up/down: 5388/0) Total: 5388 bytes
* Add AES128-GCM and AES256-GCM authenticated encryption
* Add general AES-GCM mode.
* Add [email protected] and [email protected] algo using
LibTomCrypt gcm routines.
AES-GCM is combination of AES CTR mode and GHASH, slower than AES-CTR on
CPU w/o dedicated AES/GHASH instructions therefore disabled by default.
Compiling in will add ~6kB to binary size on x86-64.
function old new delta
gcm_process - 1060 +1060
.rodata 26976 27808 +832
gcm_gf_mult - 820 +820
gcm_add_aad - 660 +660
gcm_shift_table - 512 +512
gcm_done - 471 +471
gcm_add_iv - 384 +384
gcm_init - 347 +347
dropbear_gcm_crypt - 309 +309
encrypt_packet 1068 1270 +202
decrypt_packet 756 897 +141
gcm_reset - 118 +118
read_packet 543 637 +94
read_kex_algos 792 880 +88
sshciphers 280 360 +80
gcm_mult_h - 80 +80
dropbear_gcm_start - 62 +62
dropbear_mode_gcm - 48 +48
dropbear_mode_none 24 48 +24
dropbear_mode_ctr 24 48 +24
dropbear_mode_cbc 24 48 +24
dropbear_ghash - 24 +24
dropbear_gcm_getlength - 24 +24
gen_new_keys 848 854 +6
------------------------------------------------------------------------------
(add/remove: 14/0 grow/shrink: 10/0 up/down: 6434/0) Total: 6434 bytes
author | Vladislav Grishenko <themiron@users.noreply.github.com> |
---|---|
date | Mon, 25 May 2020 20:50:25 +0500 |
parents | f52919ffd3b1 |
children | 1051e4eea25a |
line wrap: on
line source
#include "tommath_private.h" #ifdef BN_MP_DIV_D_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ static int s_is_power_of_two(mp_digit b, int *p) { int x; /* fast return if no power of two */ if ((b == 0u) || ((b & (b-1u)) != 0u)) { return 0; } for (x = 0; x < DIGIT_BIT; x++) { if (b == ((mp_digit)1<<(mp_digit)x)) { *p = x; return 1; } } return 0; } /* single digit division (based on routine from MPI) */ int mp_div_d(const mp_int *a, mp_digit b, mp_int *c, mp_digit *d) { mp_int q; mp_word w; mp_digit t; int res, ix; /* cannot divide by zero */ if (b == 0u) { return MP_VAL; } /* quick outs */ if ((b == 1u) || (mp_iszero(a) == MP_YES)) { if (d != NULL) { *d = 0; } if (c != NULL) { return mp_copy(a, c); } return MP_OKAY; } /* power of two ? */ if (s_is_power_of_two(b, &ix) == 1) { if (d != NULL) { *d = a->dp[0] & (((mp_digit)1<<(mp_digit)ix) - 1uL); } if (c != NULL) { return mp_div_2d(a, ix, c, NULL); } return MP_OKAY; } #ifdef BN_MP_DIV_3_C /* three? */ if (b == 3u) { return mp_div_3(a, c, d); } #endif /* no easy answer [c'est la vie]. Just division */ if ((res = mp_init_size(&q, a->used)) != MP_OKAY) { return res; } q.used = a->used; q.sign = a->sign; w = 0; for (ix = a->used - 1; ix >= 0; ix--) { w = (w << (mp_word)DIGIT_BIT) | (mp_word)a->dp[ix]; if (w >= b) { t = (mp_digit)(w / b); w -= (mp_word)t * (mp_word)b; } else { t = 0; } q.dp[ix] = t; } if (d != NULL) { *d = (mp_digit)w; } if (c != NULL) { mp_clamp(&q); mp_exch(&q, c); } mp_clear(&q); return res; } #endif /* ref: HEAD -> master, tag: v1.1.0 */ /* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ /* commit time: 2019-01-28 20:32:32 +0100 */