Mercurial > dropbear
view libtommath/bn_mp_exptmod.c @ 1672:3a97f14c0235
Add Chacha20-Poly1305, AES128-GCM and AES256-GCM support (#93)
* Add Chacha20-Poly1305 authenticated encryption
* Add general AEAD approach.
* Add [email protected] algo using LibTomCrypt chacha and
poly1305 routines.
Chacha20-Poly1305 is generally faster than AES256 on CPU w/o dedicated
AES instructions, having the same key size.
Compiling in will add ~5,5kB to binary size on x86-64.
function old new delta
chacha_crypt - 1397 +1397
_poly1305_block - 608 +608
poly1305_done - 595 +595
dropbear_chachapoly_crypt - 457 +457
.rodata 26976 27392 +416
poly1305_process - 290 +290
poly1305_init - 221 +221
chacha_setup - 218 +218
encrypt_packet 1068 1270 +202
dropbear_chachapoly_getlength - 147 +147
decrypt_packet 756 897 +141
chacha_ivctr64 - 137 +137
read_packet 543 637 +94
dropbear_chachapoly_start - 94 +94
read_kex_algos 792 880 +88
chacha_keystream - 69 +69
dropbear_mode_chachapoly - 48 +48
sshciphers 280 320 +40
dropbear_mode_none 24 48 +24
dropbear_mode_ctr 24 48 +24
dropbear_mode_cbc 24 48 +24
dropbear_chachapoly_mac - 24 +24
dropbear_chachapoly - 24 +24
gen_new_keys 848 854 +6
------------------------------------------------------------------------------
(add/remove: 14/0 grow/shrink: 10/0 up/down: 5388/0) Total: 5388 bytes
* Add AES128-GCM and AES256-GCM authenticated encryption
* Add general AES-GCM mode.
* Add [email protected] and [email protected] algo using
LibTomCrypt gcm routines.
AES-GCM is combination of AES CTR mode and GHASH, slower than AES-CTR on
CPU w/o dedicated AES/GHASH instructions therefore disabled by default.
Compiling in will add ~6kB to binary size on x86-64.
function old new delta
gcm_process - 1060 +1060
.rodata 26976 27808 +832
gcm_gf_mult - 820 +820
gcm_add_aad - 660 +660
gcm_shift_table - 512 +512
gcm_done - 471 +471
gcm_add_iv - 384 +384
gcm_init - 347 +347
dropbear_gcm_crypt - 309 +309
encrypt_packet 1068 1270 +202
decrypt_packet 756 897 +141
gcm_reset - 118 +118
read_packet 543 637 +94
read_kex_algos 792 880 +88
sshciphers 280 360 +80
gcm_mult_h - 80 +80
dropbear_gcm_start - 62 +62
dropbear_mode_gcm - 48 +48
dropbear_mode_none 24 48 +24
dropbear_mode_ctr 24 48 +24
dropbear_mode_cbc 24 48 +24
dropbear_ghash - 24 +24
dropbear_gcm_getlength - 24 +24
gen_new_keys 848 854 +6
------------------------------------------------------------------------------
(add/remove: 14/0 grow/shrink: 10/0 up/down: 6434/0) Total: 6434 bytes
author | Vladislav Grishenko <themiron@users.noreply.github.com> |
---|---|
date | Mon, 25 May 2020 20:50:25 +0500 |
parents | f52919ffd3b1 |
children | 1051e4eea25a |
line wrap: on
line source
#include "tommath_private.h" #ifdef BN_MP_EXPTMOD_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* this is a shell function that calls either the normal or Montgomery * exptmod functions. Originally the call to the montgomery code was * embedded in the normal function but that wasted alot of stack space * for nothing (since 99% of the time the Montgomery code would be called) */ int mp_exptmod(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y) { int dr; /* modulus P must be positive */ if (P->sign == MP_NEG) { return MP_VAL; } /* if exponent X is negative we have to recurse */ if (X->sign == MP_NEG) { #ifdef BN_MP_INVMOD_C mp_int tmpG, tmpX; int err; /* first compute 1/G mod P */ if ((err = mp_init(&tmpG)) != MP_OKAY) { return err; } if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) { mp_clear(&tmpG); return err; } /* now get |X| */ if ((err = mp_init(&tmpX)) != MP_OKAY) { mp_clear(&tmpG); return err; } if ((err = mp_abs(X, &tmpX)) != MP_OKAY) { mp_clear_multi(&tmpG, &tmpX, NULL); return err; } /* and now compute (1/G)**|X| instead of G**X [X < 0] */ err = mp_exptmod(&tmpG, &tmpX, P, Y); mp_clear_multi(&tmpG, &tmpX, NULL); return err; #else /* no invmod */ return MP_VAL; #endif } /* modified diminished radix reduction */ #if defined(BN_MP_REDUCE_IS_2K_L_C) && defined(BN_MP_REDUCE_2K_L_C) && defined(BN_S_MP_EXPTMOD_C) if (mp_reduce_is_2k_l(P) == MP_YES) { return s_mp_exptmod(G, X, P, Y, 1); } #endif #ifdef BN_MP_DR_IS_MODULUS_C /* is it a DR modulus? */ dr = mp_dr_is_modulus(P); #else /* default to no */ dr = 0; #endif #ifdef BN_MP_REDUCE_IS_2K_C /* if not, is it a unrestricted DR modulus? */ if (dr == 0) { dr = mp_reduce_is_2k(P) << 1; } #endif /* if the modulus is odd or dr != 0 use the montgomery method */ #ifdef BN_MP_EXPTMOD_FAST_C if ((mp_isodd(P) == MP_YES) || (dr != 0)) { return mp_exptmod_fast(G, X, P, Y, dr); } else { #endif #ifdef BN_S_MP_EXPTMOD_C /* otherwise use the generic Barrett reduction technique */ return s_mp_exptmod(G, X, P, Y, 0); #else /* no exptmod for evens */ return MP_VAL; #endif #ifdef BN_MP_EXPTMOD_FAST_C } #endif } #endif /* ref: HEAD -> master, tag: v1.1.0 */ /* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ /* commit time: 2019-01-28 20:32:32 +0100 */