Mercurial > dropbear
view libtommath/bn_mp_n_root_ex.c @ 1672:3a97f14c0235
Add Chacha20-Poly1305, AES128-GCM and AES256-GCM support (#93)
* Add Chacha20-Poly1305 authenticated encryption
* Add general AEAD approach.
* Add [email protected] algo using LibTomCrypt chacha and
poly1305 routines.
Chacha20-Poly1305 is generally faster than AES256 on CPU w/o dedicated
AES instructions, having the same key size.
Compiling in will add ~5,5kB to binary size on x86-64.
function old new delta
chacha_crypt - 1397 +1397
_poly1305_block - 608 +608
poly1305_done - 595 +595
dropbear_chachapoly_crypt - 457 +457
.rodata 26976 27392 +416
poly1305_process - 290 +290
poly1305_init - 221 +221
chacha_setup - 218 +218
encrypt_packet 1068 1270 +202
dropbear_chachapoly_getlength - 147 +147
decrypt_packet 756 897 +141
chacha_ivctr64 - 137 +137
read_packet 543 637 +94
dropbear_chachapoly_start - 94 +94
read_kex_algos 792 880 +88
chacha_keystream - 69 +69
dropbear_mode_chachapoly - 48 +48
sshciphers 280 320 +40
dropbear_mode_none 24 48 +24
dropbear_mode_ctr 24 48 +24
dropbear_mode_cbc 24 48 +24
dropbear_chachapoly_mac - 24 +24
dropbear_chachapoly - 24 +24
gen_new_keys 848 854 +6
------------------------------------------------------------------------------
(add/remove: 14/0 grow/shrink: 10/0 up/down: 5388/0) Total: 5388 bytes
* Add AES128-GCM and AES256-GCM authenticated encryption
* Add general AES-GCM mode.
* Add [email protected] and [email protected] algo using
LibTomCrypt gcm routines.
AES-GCM is combination of AES CTR mode and GHASH, slower than AES-CTR on
CPU w/o dedicated AES/GHASH instructions therefore disabled by default.
Compiling in will add ~6kB to binary size on x86-64.
function old new delta
gcm_process - 1060 +1060
.rodata 26976 27808 +832
gcm_gf_mult - 820 +820
gcm_add_aad - 660 +660
gcm_shift_table - 512 +512
gcm_done - 471 +471
gcm_add_iv - 384 +384
gcm_init - 347 +347
dropbear_gcm_crypt - 309 +309
encrypt_packet 1068 1270 +202
decrypt_packet 756 897 +141
gcm_reset - 118 +118
read_packet 543 637 +94
read_kex_algos 792 880 +88
sshciphers 280 360 +80
gcm_mult_h - 80 +80
dropbear_gcm_start - 62 +62
dropbear_mode_gcm - 48 +48
dropbear_mode_none 24 48 +24
dropbear_mode_ctr 24 48 +24
dropbear_mode_cbc 24 48 +24
dropbear_ghash - 24 +24
dropbear_gcm_getlength - 24 +24
gen_new_keys 848 854 +6
------------------------------------------------------------------------------
(add/remove: 14/0 grow/shrink: 10/0 up/down: 6434/0) Total: 6434 bytes
author | Vladislav Grishenko <themiron@users.noreply.github.com> |
---|---|
date | Mon, 25 May 2020 20:50:25 +0500 |
parents | f52919ffd3b1 |
children |
line wrap: on
line source
#include "tommath_private.h" #ifdef BN_MP_N_ROOT_EX_C /* LibTomMath, multiple-precision integer library -- Tom St Denis * * LibTomMath is a library that provides multiple-precision * integer arithmetic as well as number theoretic functionality. * * The library was designed directly after the MPI library by * Michael Fromberger but has been written from scratch with * additional optimizations in place. * * SPDX-License-Identifier: Unlicense */ /* find the n'th root of an integer * * Result found such that (c)**b <= a and (c+1)**b > a * * This algorithm uses Newton's approximation * x[i+1] = x[i] - f(x[i])/f'(x[i]) * which will find the root in log(N) time where * each step involves a fair bit. This is not meant to * find huge roots [square and cube, etc]. */ int mp_n_root_ex(const mp_int *a, mp_digit b, mp_int *c, int fast) { mp_int t1, t2, t3, a_; int res; /* input must be positive if b is even */ if (((b & 1u) == 0u) && (a->sign == MP_NEG)) { return MP_VAL; } if ((res = mp_init(&t1)) != MP_OKAY) { return res; } if ((res = mp_init(&t2)) != MP_OKAY) { goto LBL_T1; } if ((res = mp_init(&t3)) != MP_OKAY) { goto LBL_T2; } /* if a is negative fudge the sign but keep track */ a_ = *a; a_.sign = MP_ZPOS; /* t2 = 2 */ mp_set(&t2, 2uL); do { /* t1 = t2 */ if ((res = mp_copy(&t2, &t1)) != MP_OKAY) { goto LBL_T3; } /* t2 = t1 - ((t1**b - a) / (b * t1**(b-1))) */ /* t3 = t1**(b-1) */ if ((res = mp_expt_d_ex(&t1, b - 1u, &t3, fast)) != MP_OKAY) { goto LBL_T3; } /* numerator */ /* t2 = t1**b */ if ((res = mp_mul(&t3, &t1, &t2)) != MP_OKAY) { goto LBL_T3; } /* t2 = t1**b - a */ if ((res = mp_sub(&t2, &a_, &t2)) != MP_OKAY) { goto LBL_T3; } /* denominator */ /* t3 = t1**(b-1) * b */ if ((res = mp_mul_d(&t3, b, &t3)) != MP_OKAY) { goto LBL_T3; } /* t3 = (t1**b - a)/(b * t1**(b-1)) */ if ((res = mp_div(&t2, &t3, &t3, NULL)) != MP_OKAY) { goto LBL_T3; } if ((res = mp_sub(&t1, &t3, &t2)) != MP_OKAY) { goto LBL_T3; } } while (mp_cmp(&t1, &t2) != MP_EQ); /* result can be off by a few so check */ for (;;) { if ((res = mp_expt_d_ex(&t1, b, &t2, fast)) != MP_OKAY) { goto LBL_T3; } if (mp_cmp(&t2, &a_) == MP_GT) { if ((res = mp_sub_d(&t1, 1uL, &t1)) != MP_OKAY) { goto LBL_T3; } } else { break; } } /* set the result */ mp_exch(&t1, c); /* set the sign of the result */ c->sign = a->sign; res = MP_OKAY; LBL_T3: mp_clear(&t3); LBL_T2: mp_clear(&t2); LBL_T1: mp_clear(&t1); return res; } #endif /* ref: HEAD -> master, tag: v1.1.0 */ /* git commit: 08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */ /* commit time: 2019-01-28 20:32:32 +0100 */