view libtommath/bn_mp_sqrtmod_prime.c @ 1672:3a97f14c0235

Add Chacha20-Poly1305, AES128-GCM and AES256-GCM support (#93) * Add Chacha20-Poly1305 authenticated encryption * Add general AEAD approach. * Add [email protected] algo using LibTomCrypt chacha and poly1305 routines. Chacha20-Poly1305 is generally faster than AES256 on CPU w/o dedicated AES instructions, having the same key size. Compiling in will add ~5,5kB to binary size on x86-64. function old new delta chacha_crypt - 1397 +1397 _poly1305_block - 608 +608 poly1305_done - 595 +595 dropbear_chachapoly_crypt - 457 +457 .rodata 26976 27392 +416 poly1305_process - 290 +290 poly1305_init - 221 +221 chacha_setup - 218 +218 encrypt_packet 1068 1270 +202 dropbear_chachapoly_getlength - 147 +147 decrypt_packet 756 897 +141 chacha_ivctr64 - 137 +137 read_packet 543 637 +94 dropbear_chachapoly_start - 94 +94 read_kex_algos 792 880 +88 chacha_keystream - 69 +69 dropbear_mode_chachapoly - 48 +48 sshciphers 280 320 +40 dropbear_mode_none 24 48 +24 dropbear_mode_ctr 24 48 +24 dropbear_mode_cbc 24 48 +24 dropbear_chachapoly_mac - 24 +24 dropbear_chachapoly - 24 +24 gen_new_keys 848 854 +6 ------------------------------------------------------------------------------ (add/remove: 14/0 grow/shrink: 10/0 up/down: 5388/0) Total: 5388 bytes * Add AES128-GCM and AES256-GCM authenticated encryption * Add general AES-GCM mode. * Add [email protected] and [email protected] algo using LibTomCrypt gcm routines. AES-GCM is combination of AES CTR mode and GHASH, slower than AES-CTR on CPU w/o dedicated AES/GHASH instructions therefore disabled by default. Compiling in will add ~6kB to binary size on x86-64. function old new delta gcm_process - 1060 +1060 .rodata 26976 27808 +832 gcm_gf_mult - 820 +820 gcm_add_aad - 660 +660 gcm_shift_table - 512 +512 gcm_done - 471 +471 gcm_add_iv - 384 +384 gcm_init - 347 +347 dropbear_gcm_crypt - 309 +309 encrypt_packet 1068 1270 +202 decrypt_packet 756 897 +141 gcm_reset - 118 +118 read_packet 543 637 +94 read_kex_algos 792 880 +88 sshciphers 280 360 +80 gcm_mult_h - 80 +80 dropbear_gcm_start - 62 +62 dropbear_mode_gcm - 48 +48 dropbear_mode_none 24 48 +24 dropbear_mode_ctr 24 48 +24 dropbear_mode_cbc 24 48 +24 dropbear_ghash - 24 +24 dropbear_gcm_getlength - 24 +24 gen_new_keys 848 854 +6 ------------------------------------------------------------------------------ (add/remove: 14/0 grow/shrink: 10/0 up/down: 6434/0) Total: 6434 bytes
author Vladislav Grishenko <themiron@users.noreply.github.com>
date Mon, 25 May 2020 20:50:25 +0500
parents f52919ffd3b1
children 1051e4eea25a
line wrap: on
line source

#include "tommath_private.h"
#ifdef BN_MP_SQRTMOD_PRIME_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 *
 * LibTomMath is a library that provides multiple-precision
 * integer arithmetic as well as number theoretic functionality.
 *
 * The library was designed directly after the MPI library by
 * Michael Fromberger but has been written from scratch with
 * additional optimizations in place.
 *
 * SPDX-License-Identifier: Unlicense
 */

/* Tonelli-Shanks algorithm
 * https://en.wikipedia.org/wiki/Tonelli%E2%80%93Shanks_algorithm
 * https://gmplib.org/list-archives/gmp-discuss/2013-April/005300.html
 *
 */

int mp_sqrtmod_prime(const mp_int *n, const mp_int *prime, mp_int *ret)
{
   int res, legendre;
   mp_int t1, C, Q, S, Z, M, T, R, two;
   mp_digit i;

   /* first handle the simple cases */
   if (mp_cmp_d(n, 0uL) == MP_EQ) {
      mp_zero(ret);
      return MP_OKAY;
   }
   if (mp_cmp_d(prime, 2uL) == MP_EQ)                            return MP_VAL; /* prime must be odd */
   if ((res = mp_jacobi(n, prime, &legendre)) != MP_OKAY)        return res;
   if (legendre == -1)                                           return MP_VAL; /* quadratic non-residue mod prime */

   if ((res = mp_init_multi(&t1, &C, &Q, &S, &Z, &M, &T, &R, &two, NULL)) != MP_OKAY) {
      return res;
   }

   /* SPECIAL CASE: if prime mod 4 == 3
    * compute directly: res = n^(prime+1)/4 mod prime
    * Handbook of Applied Cryptography algorithm 3.36
    */
   if ((res = mp_mod_d(prime, 4uL, &i)) != MP_OKAY)               goto cleanup;
   if (i == 3u) {
      if ((res = mp_add_d(prime, 1uL, &t1)) != MP_OKAY)           goto cleanup;
      if ((res = mp_div_2(&t1, &t1)) != MP_OKAY)                  goto cleanup;
      if ((res = mp_div_2(&t1, &t1)) != MP_OKAY)                  goto cleanup;
      if ((res = mp_exptmod(n, &t1, prime, ret)) != MP_OKAY)      goto cleanup;
      res = MP_OKAY;
      goto cleanup;
   }

   /* NOW: Tonelli-Shanks algorithm */

   /* factor out powers of 2 from prime-1, defining Q and S as: prime-1 = Q*2^S */
   if ((res = mp_copy(prime, &Q)) != MP_OKAY)                    goto cleanup;
   if ((res = mp_sub_d(&Q, 1uL, &Q)) != MP_OKAY)                 goto cleanup;
   /* Q = prime - 1 */
   mp_zero(&S);
   /* S = 0 */
   while (mp_iseven(&Q) != MP_NO) {
      if ((res = mp_div_2(&Q, &Q)) != MP_OKAY)                    goto cleanup;
      /* Q = Q / 2 */
      if ((res = mp_add_d(&S, 1uL, &S)) != MP_OKAY)               goto cleanup;
      /* S = S + 1 */
   }

   /* find a Z such that the Legendre symbol (Z|prime) == -1 */
   if ((res = mp_set_int(&Z, 2uL)) != MP_OKAY)                    goto cleanup;
   /* Z = 2 */
   while (1) {
      if ((res = mp_jacobi(&Z, prime, &legendre)) != MP_OKAY)     goto cleanup;
      if (legendre == -1) break;
      if ((res = mp_add_d(&Z, 1uL, &Z)) != MP_OKAY)               goto cleanup;
      /* Z = Z + 1 */
   }

   if ((res = mp_exptmod(&Z, &Q, prime, &C)) != MP_OKAY)         goto cleanup;
   /* C = Z ^ Q mod prime */
   if ((res = mp_add_d(&Q, 1uL, &t1)) != MP_OKAY)                goto cleanup;
   if ((res = mp_div_2(&t1, &t1)) != MP_OKAY)                    goto cleanup;
   /* t1 = (Q + 1) / 2 */
   if ((res = mp_exptmod(n, &t1, prime, &R)) != MP_OKAY)         goto cleanup;
   /* R = n ^ ((Q + 1) / 2) mod prime */
   if ((res = mp_exptmod(n, &Q, prime, &T)) != MP_OKAY)          goto cleanup;
   /* T = n ^ Q mod prime */
   if ((res = mp_copy(&S, &M)) != MP_OKAY)                       goto cleanup;
   /* M = S */
   if ((res = mp_set_int(&two, 2uL)) != MP_OKAY)                 goto cleanup;

   res = MP_VAL;
   while (1) {
      if ((res = mp_copy(&T, &t1)) != MP_OKAY)                    goto cleanup;
      i = 0;
      while (1) {
         if (mp_cmp_d(&t1, 1uL) == MP_EQ) break;
         if ((res = mp_exptmod(&t1, &two, prime, &t1)) != MP_OKAY) goto cleanup;
         i++;
      }
      if (i == 0u) {
         if ((res = mp_copy(&R, ret)) != MP_OKAY)                  goto cleanup;
         res = MP_OKAY;
         goto cleanup;
      }
      if ((res = mp_sub_d(&M, i, &t1)) != MP_OKAY)                goto cleanup;
      if ((res = mp_sub_d(&t1, 1uL, &t1)) != MP_OKAY)             goto cleanup;
      if ((res = mp_exptmod(&two, &t1, prime, &t1)) != MP_OKAY)   goto cleanup;
      /* t1 = 2 ^ (M - i - 1) */
      if ((res = mp_exptmod(&C, &t1, prime, &t1)) != MP_OKAY)     goto cleanup;
      /* t1 = C ^ (2 ^ (M - i - 1)) mod prime */
      if ((res = mp_sqrmod(&t1, prime, &C)) != MP_OKAY)           goto cleanup;
      /* C = (t1 * t1) mod prime */
      if ((res = mp_mulmod(&R, &t1, prime, &R)) != MP_OKAY)       goto cleanup;
      /* R = (R * t1) mod prime */
      if ((res = mp_mulmod(&T, &C, prime, &T)) != MP_OKAY)        goto cleanup;
      /* T = (T * C) mod prime */
      mp_set(&M, i);
      /* M = i */
   }

cleanup:
   mp_clear_multi(&t1, &C, &Q, &S, &Z, &M, &T, &R, &two, NULL);
   return res;
}

#endif

/* ref:         HEAD -> master, tag: v1.1.0 */
/* git commit:  08549ad6bc8b0cede0b357a9c341c5c6473a9c55 */
/* commit time: 2019-01-28 20:32:32 +0100 */