view libtommath/poster.tex @ 1672:3a97f14c0235

Add Chacha20-Poly1305, AES128-GCM and AES256-GCM support (#93) * Add Chacha20-Poly1305 authenticated encryption * Add general AEAD approach. * Add [email protected] algo using LibTomCrypt chacha and poly1305 routines. Chacha20-Poly1305 is generally faster than AES256 on CPU w/o dedicated AES instructions, having the same key size. Compiling in will add ~5,5kB to binary size on x86-64. function old new delta chacha_crypt - 1397 +1397 _poly1305_block - 608 +608 poly1305_done - 595 +595 dropbear_chachapoly_crypt - 457 +457 .rodata 26976 27392 +416 poly1305_process - 290 +290 poly1305_init - 221 +221 chacha_setup - 218 +218 encrypt_packet 1068 1270 +202 dropbear_chachapoly_getlength - 147 +147 decrypt_packet 756 897 +141 chacha_ivctr64 - 137 +137 read_packet 543 637 +94 dropbear_chachapoly_start - 94 +94 read_kex_algos 792 880 +88 chacha_keystream - 69 +69 dropbear_mode_chachapoly - 48 +48 sshciphers 280 320 +40 dropbear_mode_none 24 48 +24 dropbear_mode_ctr 24 48 +24 dropbear_mode_cbc 24 48 +24 dropbear_chachapoly_mac - 24 +24 dropbear_chachapoly - 24 +24 gen_new_keys 848 854 +6 ------------------------------------------------------------------------------ (add/remove: 14/0 grow/shrink: 10/0 up/down: 5388/0) Total: 5388 bytes * Add AES128-GCM and AES256-GCM authenticated encryption * Add general AES-GCM mode. * Add [email protected] and [email protected] algo using LibTomCrypt gcm routines. AES-GCM is combination of AES CTR mode and GHASH, slower than AES-CTR on CPU w/o dedicated AES/GHASH instructions therefore disabled by default. Compiling in will add ~6kB to binary size on x86-64. function old new delta gcm_process - 1060 +1060 .rodata 26976 27808 +832 gcm_gf_mult - 820 +820 gcm_add_aad - 660 +660 gcm_shift_table - 512 +512 gcm_done - 471 +471 gcm_add_iv - 384 +384 gcm_init - 347 +347 dropbear_gcm_crypt - 309 +309 encrypt_packet 1068 1270 +202 decrypt_packet 756 897 +141 gcm_reset - 118 +118 read_packet 543 637 +94 read_kex_algos 792 880 +88 sshciphers 280 360 +80 gcm_mult_h - 80 +80 dropbear_gcm_start - 62 +62 dropbear_mode_gcm - 48 +48 dropbear_mode_none 24 48 +24 dropbear_mode_ctr 24 48 +24 dropbear_mode_cbc 24 48 +24 dropbear_ghash - 24 +24 dropbear_gcm_getlength - 24 +24 gen_new_keys 848 854 +6 ------------------------------------------------------------------------------ (add/remove: 14/0 grow/shrink: 10/0 up/down: 6434/0) Total: 6434 bytes
author Vladislav Grishenko <themiron@users.noreply.github.com>
date Mon, 25 May 2020 20:50:25 +0500
parents eed26cff980b
children
line wrap: on
line source

\documentclass[landscape,11pt]{article}
\usepackage{amsmath, amssymb}
\usepackage{hyperref}
\begin{document}
\hspace*{-3in}
\begin{tabular}{llllll}
$c = a + b$  & {\tt mp\_add(\&a, \&b, \&c)} & $b = 2a$  & {\tt mp\_mul\_2(\&a, \&b)} & \\
$c = a - b$  & {\tt mp\_sub(\&a, \&b, \&c)} & $b = a/2$ & {\tt mp\_div\_2(\&a, \&b)} & \\
$c = ab $   & {\tt mp\_mul(\&a, \&b, \&c)}  & $c = 2^ba$  & {\tt mp\_mul\_2d(\&a, b, \&c)}  \\
$b = a^2 $  & {\tt mp\_sqr(\&a, \&b)}       & $c = a/2^b, d = a \mod 2^b$ & {\tt mp\_div\_2d(\&a, b, \&c, \&d)} \\
$c = \lfloor a/b \rfloor, d = a \mod b$ & {\tt mp\_div(\&a, \&b, \&c, \&d)} & $c = a \mod 2^b $  & {\tt mp\_mod\_2d(\&a, b, \&c)}  \\
 && \\
$a = b $  & {\tt mp\_set\_int(\&a, b)}  & $c = a \vee b$  & {\tt mp\_or(\&a, \&b, \&c)}  \\
$b = a $  & {\tt mp\_copy(\&a, \&b)} & $c = a \wedge b$  & {\tt mp\_and(\&a, \&b, \&c)}  \\
 && $c = a \oplus b$  & {\tt mp\_xor(\&a, \&b, \&c)}  \\
 & \\
$b = -a $  & {\tt mp\_neg(\&a, \&b)}  & $d = a + b \mod c$  & {\tt mp\_addmod(\&a, \&b, \&c, \&d)}  \\
$b = |a| $  & {\tt mp\_abs(\&a, \&b)} & $d = a - b \mod c$  & {\tt mp\_submod(\&a, \&b, \&c, \&d)}  \\
 && $d = ab \mod c$  & {\tt mp\_mulmod(\&a, \&b, \&c, \&d)}  \\
Compare $a$ and $b$ & {\tt mp\_cmp(\&a, \&b)} & $c = a^2 \mod b$  & {\tt mp\_sqrmod(\&a, \&b, \&c)}  \\
Is Zero? & {\tt mp\_iszero(\&a)} & $c = a^{-1} \mod b$  & {\tt mp\_invmod(\&a, \&b, \&c)} \\
Is Even? & {\tt mp\_iseven(\&a)} & $d = a^b \mod c$ & {\tt mp\_exptmod(\&a, \&b, \&c, \&d)} \\
Is Odd ? & {\tt mp\_isodd(\&a)} \\
&\\
$\vert \vert a \vert \vert$ & {\tt mp\_unsigned\_bin\_size(\&a)} & $res$ = 1 if $a$ prime to $t$ rounds? & {\tt mp\_prime\_is\_prime(\&a, t, \&res)} \\
$buf \leftarrow a$          & {\tt mp\_to\_unsigned\_bin(\&a, buf)} & Next prime after $a$ to $t$ rounds. & {\tt mp\_prime\_next\_prime(\&a, t, bbs\_style)} \\
$a \leftarrow buf[0..len-1]$          & {\tt mp\_read\_unsigned\_bin(\&a, buf, len)} \\
&\\
$b = \sqrt{a}$ & {\tt mp\_sqrt(\&a, \&b)}  & $c = \mbox{gcd}(a, b)$ & {\tt mp\_gcd(\&a, \&b, \&c)} \\
$c = a^{1/b}$ & {\tt mp\_n\_root(\&a, b, \&c)} & $c = \mbox{lcm}(a, b)$ & {\tt mp\_lcm(\&a, \&b, \&c)} \\
&\\
Greater Than & MP\_GT & Equal To & MP\_EQ \\
Less Than & MP\_LT & Bits per digit & DIGIT\_BIT \\
\end{tabular}
\end{document}