Mercurial > dropbear
view libtommath/tommath.out @ 1672:3a97f14c0235
Add Chacha20-Poly1305, AES128-GCM and AES256-GCM support (#93)
* Add Chacha20-Poly1305 authenticated encryption
* Add general AEAD approach.
* Add [email protected] algo using LibTomCrypt chacha and
poly1305 routines.
Chacha20-Poly1305 is generally faster than AES256 on CPU w/o dedicated
AES instructions, having the same key size.
Compiling in will add ~5,5kB to binary size on x86-64.
function old new delta
chacha_crypt - 1397 +1397
_poly1305_block - 608 +608
poly1305_done - 595 +595
dropbear_chachapoly_crypt - 457 +457
.rodata 26976 27392 +416
poly1305_process - 290 +290
poly1305_init - 221 +221
chacha_setup - 218 +218
encrypt_packet 1068 1270 +202
dropbear_chachapoly_getlength - 147 +147
decrypt_packet 756 897 +141
chacha_ivctr64 - 137 +137
read_packet 543 637 +94
dropbear_chachapoly_start - 94 +94
read_kex_algos 792 880 +88
chacha_keystream - 69 +69
dropbear_mode_chachapoly - 48 +48
sshciphers 280 320 +40
dropbear_mode_none 24 48 +24
dropbear_mode_ctr 24 48 +24
dropbear_mode_cbc 24 48 +24
dropbear_chachapoly_mac - 24 +24
dropbear_chachapoly - 24 +24
gen_new_keys 848 854 +6
------------------------------------------------------------------------------
(add/remove: 14/0 grow/shrink: 10/0 up/down: 5388/0) Total: 5388 bytes
* Add AES128-GCM and AES256-GCM authenticated encryption
* Add general AES-GCM mode.
* Add [email protected] and [email protected] algo using
LibTomCrypt gcm routines.
AES-GCM is combination of AES CTR mode and GHASH, slower than AES-CTR on
CPU w/o dedicated AES/GHASH instructions therefore disabled by default.
Compiling in will add ~6kB to binary size on x86-64.
function old new delta
gcm_process - 1060 +1060
.rodata 26976 27808 +832
gcm_gf_mult - 820 +820
gcm_add_aad - 660 +660
gcm_shift_table - 512 +512
gcm_done - 471 +471
gcm_add_iv - 384 +384
gcm_init - 347 +347
dropbear_gcm_crypt - 309 +309
encrypt_packet 1068 1270 +202
decrypt_packet 756 897 +141
gcm_reset - 118 +118
read_packet 543 637 +94
read_kex_algos 792 880 +88
sshciphers 280 360 +80
gcm_mult_h - 80 +80
dropbear_gcm_start - 62 +62
dropbear_mode_gcm - 48 +48
dropbear_mode_none 24 48 +24
dropbear_mode_ctr 24 48 +24
dropbear_mode_cbc 24 48 +24
dropbear_ghash - 24 +24
dropbear_gcm_getlength - 24 +24
gen_new_keys 848 854 +6
------------------------------------------------------------------------------
(add/remove: 14/0 grow/shrink: 10/0 up/down: 6434/0) Total: 6434 bytes
author | Vladislav Grishenko <themiron@users.noreply.github.com> |
---|---|
date | Mon, 25 May 2020 20:50:25 +0500 |
parents | eed26cff980b |
children |
line wrap: on
line source
\BOOKMARK [0][-]{chapter.1}{Introduction}{} \BOOKMARK [1][-]{section.1.1}{Multiple Precision Arithmetic}{chapter.1} \BOOKMARK [2][-]{subsection.1.1.1}{What is Multiple Precision Arithmetic?}{section.1.1} \BOOKMARK [2][-]{subsection.1.1.2}{The Need for Multiple Precision Arithmetic}{section.1.1} \BOOKMARK [2][-]{subsection.1.1.3}{Benefits of Multiple Precision Arithmetic}{section.1.1} \BOOKMARK [1][-]{section.1.2}{Purpose of This Text}{chapter.1} \BOOKMARK [1][-]{section.1.3}{Discussion and Notation}{chapter.1} \BOOKMARK [2][-]{subsection.1.3.1}{Notation}{section.1.3} \BOOKMARK [2][-]{subsection.1.3.2}{Precision Notation}{section.1.3} \BOOKMARK [2][-]{subsection.1.3.3}{Algorithm Inputs and Outputs}{section.1.3} \BOOKMARK [2][-]{subsection.1.3.4}{Mathematical Expressions}{section.1.3} \BOOKMARK [2][-]{subsection.1.3.5}{Work Effort}{section.1.3} \BOOKMARK [1][-]{section.1.4}{Exercises}{chapter.1} \BOOKMARK [1][-]{section.1.5}{Introduction to LibTomMath}{chapter.1} \BOOKMARK [2][-]{subsection.1.5.1}{What is LibTomMath?}{section.1.5} \BOOKMARK [2][-]{subsection.1.5.2}{Goals of LibTomMath}{section.1.5} \BOOKMARK [1][-]{section.1.6}{Choice of LibTomMath}{chapter.1} \BOOKMARK [2][-]{subsection.1.6.1}{Code Base}{section.1.6} \BOOKMARK [2][-]{subsection.1.6.2}{API Simplicity}{section.1.6} \BOOKMARK [2][-]{subsection.1.6.3}{Optimizations}{section.1.6} \BOOKMARK [2][-]{subsection.1.6.4}{Portability and Stability}{section.1.6} \BOOKMARK [2][-]{subsection.1.6.5}{Choice}{section.1.6} \BOOKMARK [0][-]{chapter.2}{Getting Started}{} \BOOKMARK [1][-]{section.2.1}{Library Basics}{chapter.2} \BOOKMARK [1][-]{section.2.2}{What is a Multiple Precision Integer?}{chapter.2} \BOOKMARK [2][-]{subsection.2.2.1}{The mp\137int Structure}{section.2.2} \BOOKMARK [1][-]{section.2.3}{Argument Passing}{chapter.2} \BOOKMARK [1][-]{section.2.4}{Return Values}{chapter.2} \BOOKMARK [1][-]{section.2.5}{Initialization and Clearing}{chapter.2} \BOOKMARK [2][-]{subsection.2.5.1}{Initializing an mp\137int}{section.2.5} \BOOKMARK [2][-]{subsection.2.5.2}{Clearing an mp\137int}{section.2.5} \BOOKMARK [1][-]{section.2.6}{Maintenance Algorithms}{chapter.2} \BOOKMARK [2][-]{subsection.2.6.1}{Augmenting an mp\137int's Precision}{section.2.6} \BOOKMARK [2][-]{subsection.2.6.2}{Initializing Variable Precision mp\137ints}{section.2.6} \BOOKMARK [2][-]{subsection.2.6.3}{Multiple Integer Initializations and Clearings}{section.2.6} \BOOKMARK [2][-]{subsection.2.6.4}{Clamping Excess Digits}{section.2.6} \BOOKMARK [0][-]{chapter.3}{Basic Operations}{} \BOOKMARK [1][-]{section.3.1}{Introduction}{chapter.3} \BOOKMARK [1][-]{section.3.2}{Assigning Values to mp\137int Structures}{chapter.3} \BOOKMARK [2][-]{subsection.3.2.1}{Copying an mp\137int}{section.3.2} \BOOKMARK [2][-]{subsection.3.2.2}{Creating a Clone}{section.3.2} \BOOKMARK [1][-]{section.3.3}{Zeroing an Integer}{chapter.3} \BOOKMARK [1][-]{section.3.4}{Sign Manipulation}{chapter.3} \BOOKMARK [2][-]{subsection.3.4.1}{Absolute Value}{section.3.4} \BOOKMARK [2][-]{subsection.3.4.2}{Integer Negation}{section.3.4} \BOOKMARK [1][-]{section.3.5}{Small Constants}{chapter.3} \BOOKMARK [2][-]{subsection.3.5.1}{Setting Small Constants}{section.3.5} \BOOKMARK [2][-]{subsection.3.5.2}{Setting Large Constants}{section.3.5} \BOOKMARK [1][-]{section.3.6}{Comparisons}{chapter.3} \BOOKMARK [2][-]{subsection.3.6.1}{Unsigned Comparisions}{section.3.6} \BOOKMARK [2][-]{subsection.3.6.2}{Signed Comparisons}{section.3.6} \BOOKMARK [0][-]{chapter.4}{Basic Arithmetic}{} \BOOKMARK [1][-]{section.4.1}{Introduction}{chapter.4} \BOOKMARK [1][-]{section.4.2}{Addition and Subtraction}{chapter.4} \BOOKMARK [2][-]{subsection.4.2.1}{Low Level Addition}{section.4.2} \BOOKMARK [2][-]{subsection.4.2.2}{Low Level Subtraction}{section.4.2} \BOOKMARK [2][-]{subsection.4.2.3}{High Level Addition}{section.4.2} \BOOKMARK [2][-]{subsection.4.2.4}{High Level Subtraction}{section.4.2} \BOOKMARK [1][-]{section.4.3}{Bit and Digit Shifting}{chapter.4} \BOOKMARK [2][-]{subsection.4.3.1}{Multiplication by Two}{section.4.3} \BOOKMARK [2][-]{subsection.4.3.2}{Division by Two}{section.4.3} \BOOKMARK [1][-]{section.4.4}{Polynomial Basis Operations}{chapter.4} \BOOKMARK [2][-]{subsection.4.4.1}{Multiplication by x}{section.4.4} \BOOKMARK [2][-]{subsection.4.4.2}{Division by x}{section.4.4} \BOOKMARK [1][-]{section.4.5}{Powers of Two}{chapter.4} \BOOKMARK [2][-]{subsection.4.5.1}{Multiplication by Power of Two}{section.4.5} \BOOKMARK [2][-]{subsection.4.5.2}{Division by Power of Two}{section.4.5} \BOOKMARK [2][-]{subsection.4.5.3}{Remainder of Division by Power of Two}{section.4.5} \BOOKMARK [0][-]{chapter.5}{Multiplication and Squaring}{} \BOOKMARK [1][-]{section.5.1}{The Multipliers}{chapter.5} \BOOKMARK [1][-]{section.5.2}{Multiplication}{chapter.5} \BOOKMARK [2][-]{subsection.5.2.1}{The Baseline Multiplication}{section.5.2} \BOOKMARK [2][-]{subsection.5.2.2}{Faster Multiplication by the ``Comba'' Method}{section.5.2} \BOOKMARK [2][-]{subsection.5.2.3}{Polynomial Basis Multiplication}{section.5.2} \BOOKMARK [2][-]{subsection.5.2.4}{Karatsuba Multiplication}{section.5.2} \BOOKMARK [2][-]{subsection.5.2.5}{Toom-Cook 3-Way Multiplication}{section.5.2} \BOOKMARK [2][-]{subsection.5.2.6}{Signed Multiplication}{section.5.2} \BOOKMARK [1][-]{section.5.3}{Squaring}{chapter.5} \BOOKMARK [2][-]{subsection.5.3.1}{The Baseline Squaring Algorithm}{section.5.3} \BOOKMARK [2][-]{subsection.5.3.2}{Faster Squaring by the ``Comba'' Method}{section.5.3} \BOOKMARK [2][-]{subsection.5.3.3}{Polynomial Basis Squaring}{section.5.3} \BOOKMARK [2][-]{subsection.5.3.4}{Karatsuba Squaring}{section.5.3} \BOOKMARK [2][-]{subsection.5.3.5}{Toom-Cook Squaring}{section.5.3} \BOOKMARK [2][-]{subsection.5.3.6}{High Level Squaring}{section.5.3} \BOOKMARK [0][-]{chapter.6}{Modular Reduction}{} \BOOKMARK [1][-]{section.6.1}{Basics of Modular Reduction}{chapter.6} \BOOKMARK [1][-]{section.6.2}{The Barrett Reduction}{chapter.6} \BOOKMARK [2][-]{subsection.6.2.1}{Fixed Point Arithmetic}{section.6.2} \BOOKMARK [2][-]{subsection.6.2.2}{Choosing a Radix Point}{section.6.2} \BOOKMARK [2][-]{subsection.6.2.3}{Trimming the Quotient}{section.6.2} \BOOKMARK [2][-]{subsection.6.2.4}{Trimming the Residue}{section.6.2} \BOOKMARK [2][-]{subsection.6.2.5}{The Barrett Algorithm}{section.6.2} \BOOKMARK [2][-]{subsection.6.2.6}{The Barrett Setup Algorithm}{section.6.2} \BOOKMARK [1][-]{section.6.3}{The Montgomery Reduction}{chapter.6} \BOOKMARK [2][-]{subsection.6.3.1}{Digit Based Montgomery Reduction}{section.6.3} \BOOKMARK [2][-]{subsection.6.3.2}{Baseline Montgomery Reduction}{section.6.3} \BOOKMARK [2][-]{subsection.6.3.3}{Faster ``Comba'' Montgomery Reduction}{section.6.3} \BOOKMARK [2][-]{subsection.6.3.4}{Montgomery Setup}{section.6.3} \BOOKMARK [1][-]{section.6.4}{The Diminished Radix Algorithm}{chapter.6} \BOOKMARK [2][-]{subsection.6.4.1}{Choice of Moduli}{section.6.4} \BOOKMARK [2][-]{subsection.6.4.2}{Choice of k}{section.6.4} \BOOKMARK [2][-]{subsection.6.4.3}{Restricted Diminished Radix Reduction}{section.6.4} \BOOKMARK [2][-]{subsection.6.4.4}{Unrestricted Diminished Radix Reduction}{section.6.4} \BOOKMARK [1][-]{section.6.5}{Algorithm Comparison}{chapter.6} \BOOKMARK [0][-]{chapter.7}{Exponentiation}{} \BOOKMARK [1][-]{section.7.1}{Exponentiation Basics}{chapter.7} \BOOKMARK [2][-]{subsection.7.1.1}{Single Digit Exponentiation}{section.7.1} \BOOKMARK [1][-]{section.7.2}{k-ary Exponentiation}{chapter.7} \BOOKMARK [2][-]{subsection.7.2.1}{Optimal Values of k}{section.7.2} \BOOKMARK [2][-]{subsection.7.2.2}{Sliding-Window Exponentiation}{section.7.2} \BOOKMARK [1][-]{section.7.3}{Modular Exponentiation}{chapter.7} \BOOKMARK [2][-]{subsection.7.3.1}{Barrett Modular Exponentiation}{section.7.3} \BOOKMARK [1][-]{section.7.4}{Quick Power of Two}{chapter.7} \BOOKMARK [0][-]{chapter.8}{Higher Level Algorithms}{} \BOOKMARK [1][-]{section.8.1}{Integer Division with Remainder}{chapter.8} \BOOKMARK [2][-]{subsection.8.1.1}{Quotient Estimation}{section.8.1} \BOOKMARK [2][-]{subsection.8.1.2}{Normalized Integers}{section.8.1} \BOOKMARK [2][-]{subsection.8.1.3}{Radix- Division with Remainder}{section.8.1} \BOOKMARK [1][-]{section.8.2}{Single Digit Helpers}{chapter.8} \BOOKMARK [2][-]{subsection.8.2.1}{Single Digit Addition and Subtraction}{section.8.2} \BOOKMARK [2][-]{subsection.8.2.2}{Single Digit Multiplication}{section.8.2} \BOOKMARK [2][-]{subsection.8.2.3}{Single Digit Division}{section.8.2} \BOOKMARK [2][-]{subsection.8.2.4}{Single Digit Root Extraction}{section.8.2} \BOOKMARK [1][-]{section.8.3}{Random Number Generation}{chapter.8} \BOOKMARK [1][-]{section.8.4}{Formatted Representations}{chapter.8} \BOOKMARK [2][-]{subsection.8.4.1}{Reading Radix-n Input}{section.8.4} \BOOKMARK [2][-]{subsection.8.4.2}{Generating Radix-n Output}{section.8.4} \BOOKMARK [0][-]{chapter.9}{Number Theoretic Algorithms}{} \BOOKMARK [1][-]{section.9.1}{Greatest Common Divisor}{chapter.9} \BOOKMARK [2][-]{subsection.9.1.1}{Complete Greatest Common Divisor}{section.9.1} \BOOKMARK [1][-]{section.9.2}{Least Common Multiple}{chapter.9} \BOOKMARK [1][-]{section.9.3}{Jacobi Symbol Computation}{chapter.9} \BOOKMARK [2][-]{subsection.9.3.1}{Jacobi Symbol}{section.9.3} \BOOKMARK [1][-]{section.9.4}{Modular Inverse}{chapter.9} \BOOKMARK [2][-]{subsection.9.4.1}{General Case}{section.9.4} \BOOKMARK [1][-]{section.9.5}{Primality Tests}{chapter.9} \BOOKMARK [2][-]{subsection.9.5.1}{Trial Division}{section.9.5} \BOOKMARK [2][-]{subsection.9.5.2}{The Fermat Test}{section.9.5} \BOOKMARK [2][-]{subsection.9.5.3}{The Miller-Rabin Test}{section.9.5}