Mercurial > dropbear
view libtomcrypt/src/math/tfm_desc.c @ 1022:4121ca987e6a
connect_remote() is now always non-blocking
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Sat, 14 Feb 2015 09:56:11 +0800 |
parents | 0cbe8f6dbf9e |
children | f849a5ca2efc |
line wrap: on
line source
/* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. * * Tom St Denis, [email protected], http://libtomcrypt.com */ #define DESC_DEF_ONLY #include "tomcrypt.h" #ifdef TFM_DESC #include <tfm.h> static const struct { int tfm_code, ltc_code; } tfm_to_ltc_codes[] = { { FP_OKAY , CRYPT_OK}, { FP_MEM , CRYPT_MEM}, { FP_VAL , CRYPT_INVALID_ARG}, }; /** Convert a tfm error to a LTC error (Possibly the most powerful function ever! Oh wait... no) @param err The error to convert @return The equivalent LTC error code or CRYPT_ERROR if none found */ static int tfm_to_ltc_error(int err) { int x; for (x = 0; x < (int)(sizeof(tfm_to_ltc_codes)/sizeof(tfm_to_ltc_codes[0])); x++) { if (err == tfm_to_ltc_codes[x].tfm_code) { return tfm_to_ltc_codes[x].ltc_code; } } return CRYPT_ERROR; } static int init(void **a) { LTC_ARGCHK(a != NULL); *a = XCALLOC(1, sizeof(fp_int)); if (*a == NULL) { return CRYPT_MEM; } fp_init(*a); return CRYPT_OK; } static void deinit(void *a) { LTC_ARGCHKVD(a != NULL); XFREE(a); } static int neg(void *a, void *b) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); fp_neg(((fp_int*)a), ((fp_int*)b)); return CRYPT_OK; } static int copy(void *a, void *b) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); fp_copy(a, b); return CRYPT_OK; } static int init_copy(void **a, void *b) { if (init(a) != CRYPT_OK) { return CRYPT_MEM; } return copy(b, *a); } /* ---- trivial ---- */ static int set_int(void *a, unsigned long b) { LTC_ARGCHK(a != NULL); fp_set(a, b); return CRYPT_OK; } static unsigned long get_int(void *a) { fp_int *A; LTC_ARGCHK(a != NULL); A = a; return A->used > 0 ? A->dp[0] : 0; } static unsigned long get_digit(void *a, int n) { fp_int *A; LTC_ARGCHK(a != NULL); A = a; return (n >= A->used || n < 0) ? 0 : A->dp[n]; } static int get_digit_count(void *a) { fp_int *A; LTC_ARGCHK(a != NULL); A = a; return A->used; } static int compare(void *a, void *b) { int ret; LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); ret = fp_cmp(a, b); switch (ret) { case FP_LT: return LTC_MP_LT; case FP_EQ: return LTC_MP_EQ; case FP_GT: return LTC_MP_GT; } return 0; } static int compare_d(void *a, unsigned long b) { int ret; LTC_ARGCHK(a != NULL); ret = fp_cmp_d(a, b); switch (ret) { case FP_LT: return LTC_MP_LT; case FP_EQ: return LTC_MP_EQ; case FP_GT: return LTC_MP_GT; } return 0; } static int count_bits(void *a) { LTC_ARGCHK(a != NULL); return fp_count_bits(a); } static int count_lsb_bits(void *a) { LTC_ARGCHK(a != NULL); return fp_cnt_lsb(a); } static int twoexpt(void *a, int n) { LTC_ARGCHK(a != NULL); fp_2expt(a, n); return CRYPT_OK; } /* ---- conversions ---- */ /* read ascii string */ static int read_radix(void *a, const char *b, int radix) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); return tfm_to_ltc_error(fp_read_radix(a, (char *)b, radix)); } /* write one */ static int write_radix(void *a, char *b, int radix) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); return tfm_to_ltc_error(fp_toradix(a, b, radix)); } /* get size as unsigned char string */ static unsigned long unsigned_size(void *a) { LTC_ARGCHK(a != NULL); return fp_unsigned_bin_size(a); } /* store */ static int unsigned_write(void *a, unsigned char *b) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); fp_to_unsigned_bin(a, b); return CRYPT_OK; } /* read */ static int unsigned_read(void *a, unsigned char *b, unsigned long len) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); fp_read_unsigned_bin(a, b, len); return CRYPT_OK; } /* add */ static int add(void *a, void *b, void *c) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); LTC_ARGCHK(c != NULL); fp_add(a, b, c); return CRYPT_OK; } static int addi(void *a, unsigned long b, void *c) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(c != NULL); fp_add_d(a, b, c); return CRYPT_OK; } /* sub */ static int sub(void *a, void *b, void *c) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); LTC_ARGCHK(c != NULL); fp_sub(a, b, c); return CRYPT_OK; } static int subi(void *a, unsigned long b, void *c) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(c != NULL); fp_sub_d(a, b, c); return CRYPT_OK; } /* mul */ static int mul(void *a, void *b, void *c) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); LTC_ARGCHK(c != NULL); fp_mul(a, b, c); return CRYPT_OK; } static int muli(void *a, unsigned long b, void *c) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(c != NULL); fp_mul_d(a, b, c); return CRYPT_OK; } /* sqr */ static int sqr(void *a, void *b) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); fp_sqr(a, b); return CRYPT_OK; } /* div */ static int divide(void *a, void *b, void *c, void *d) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); return tfm_to_ltc_error(fp_div(a, b, c, d)); } static int div_2(void *a, void *b) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); fp_div_2(a, b); return CRYPT_OK; } /* modi */ static int modi(void *a, unsigned long b, unsigned long *c) { fp_digit tmp; int err; LTC_ARGCHK(a != NULL); LTC_ARGCHK(c != NULL); if ((err = tfm_to_ltc_error(fp_mod_d(a, b, &tmp))) != CRYPT_OK) { return err; } *c = tmp; return CRYPT_OK; } /* gcd */ static int gcd(void *a, void *b, void *c) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); LTC_ARGCHK(c != NULL); fp_gcd(a, b, c); return CRYPT_OK; } /* lcm */ static int lcm(void *a, void *b, void *c) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); LTC_ARGCHK(c != NULL); fp_lcm(a, b, c); return CRYPT_OK; } static int mulmod(void *a, void *b, void *c, void *d) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); LTC_ARGCHK(c != NULL); LTC_ARGCHK(d != NULL); return tfm_to_ltc_error(fp_mulmod(a,b,c,d)); } static int sqrmod(void *a, void *b, void *c) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); LTC_ARGCHK(c != NULL); return tfm_to_ltc_error(fp_sqrmod(a,b,c)); } /* invmod */ static int invmod(void *a, void *b, void *c) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); LTC_ARGCHK(c != NULL); return tfm_to_ltc_error(fp_invmod(a, b, c)); } /* setup */ static int montgomery_setup(void *a, void **b) { int err; LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); *b = XCALLOC(1, sizeof(fp_digit)); if (*b == NULL) { return CRYPT_MEM; } if ((err = tfm_to_ltc_error(fp_montgomery_setup(a, (fp_digit *)*b))) != CRYPT_OK) { XFREE(*b); } return err; } /* get normalization value */ static int montgomery_normalization(void *a, void *b) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); fp_montgomery_calc_normalization(a, b); return CRYPT_OK; } /* reduce */ static int montgomery_reduce(void *a, void *b, void *c) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); LTC_ARGCHK(c != NULL); fp_montgomery_reduce(a, b, *((fp_digit *)c)); return CRYPT_OK; } /* clean up */ static void montgomery_deinit(void *a) { XFREE(a); } static int exptmod(void *a, void *b, void *c, void *d) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); LTC_ARGCHK(c != NULL); LTC_ARGCHK(d != NULL); return tfm_to_ltc_error(fp_exptmod(a,b,c,d)); } static int isprime(void *a, int *b) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); *b = (fp_isprime(a) == FP_YES) ? LTC_MP_YES : LTC_MP_NO; return CRYPT_OK; } #if defined(MECC) && defined(MECC_ACCEL) static int tfm_ecc_projective_dbl_point(ecc_point *P, ecc_point *R, void *modulus, void *Mp) { fp_int t1, t2; fp_digit mp; LTC_ARGCHK(P != NULL); LTC_ARGCHK(R != NULL); LTC_ARGCHK(modulus != NULL); LTC_ARGCHK(Mp != NULL); mp = *((fp_digit*)Mp); fp_init(&t1); fp_init(&t2); if (P != R) { fp_copy(P->x, R->x); fp_copy(P->y, R->y); fp_copy(P->z, R->z); } /* t1 = Z * Z */ fp_sqr(R->z, &t1); fp_montgomery_reduce(&t1, modulus, mp); /* Z = Y * Z */ fp_mul(R->z, R->y, R->z); fp_montgomery_reduce(R->z, modulus, mp); /* Z = 2Z */ fp_add(R->z, R->z, R->z); if (fp_cmp(R->z, modulus) != FP_LT) { fp_sub(R->z, modulus, R->z); } /* &t2 = X - T1 */ fp_sub(R->x, &t1, &t2); if (fp_cmp_d(&t2, 0) == FP_LT) { fp_add(&t2, modulus, &t2); } /* T1 = X + T1 */ fp_add(&t1, R->x, &t1); if (fp_cmp(&t1, modulus) != FP_LT) { fp_sub(&t1, modulus, &t1); } /* T2 = T1 * T2 */ fp_mul(&t1, &t2, &t2); fp_montgomery_reduce(&t2, modulus, mp); /* T1 = 2T2 */ fp_add(&t2, &t2, &t1); if (fp_cmp(&t1, modulus) != FP_LT) { fp_sub(&t1, modulus, &t1); } /* T1 = T1 + T2 */ fp_add(&t1, &t2, &t1); if (fp_cmp(&t1, modulus) != FP_LT) { fp_sub(&t1, modulus, &t1); } /* Y = 2Y */ fp_add(R->y, R->y, R->y); if (fp_cmp(R->y, modulus) != FP_LT) { fp_sub(R->y, modulus, R->y); } /* Y = Y * Y */ fp_sqr(R->y, R->y); fp_montgomery_reduce(R->y, modulus, mp); /* T2 = Y * Y */ fp_sqr(R->y, &t2); fp_montgomery_reduce(&t2, modulus, mp); /* T2 = T2/2 */ if (fp_isodd(&t2)) { fp_add(&t2, modulus, &t2); } fp_div_2(&t2, &t2); /* Y = Y * X */ fp_mul(R->y, R->x, R->y); fp_montgomery_reduce(R->y, modulus, mp); /* X = T1 * T1 */ fp_sqr(&t1, R->x); fp_montgomery_reduce(R->x, modulus, mp); /* X = X - Y */ fp_sub(R->x, R->y, R->x); if (fp_cmp_d(R->x, 0) == FP_LT) { fp_add(R->x, modulus, R->x); } /* X = X - Y */ fp_sub(R->x, R->y, R->x); if (fp_cmp_d(R->x, 0) == FP_LT) { fp_add(R->x, modulus, R->x); } /* Y = Y - X */ fp_sub(R->y, R->x, R->y); if (fp_cmp_d(R->y, 0) == FP_LT) { fp_add(R->y, modulus, R->y); } /* Y = Y * T1 */ fp_mul(R->y, &t1, R->y); fp_montgomery_reduce(R->y, modulus, mp); /* Y = Y - T2 */ fp_sub(R->y, &t2, R->y); if (fp_cmp_d(R->y, 0) == FP_LT) { fp_add(R->y, modulus, R->y); } return CRYPT_OK; } /** Add two ECC points @param P The point to add @param Q The point to add @param R [out] The destination of the double @param modulus The modulus of the field the ECC curve is in @param mp The "b" value from montgomery_setup() @return CRYPT_OK on success */ static int tfm_ecc_projective_add_point(ecc_point *P, ecc_point *Q, ecc_point *R, void *modulus, void *Mp) { fp_int t1, t2, x, y, z; fp_digit mp; LTC_ARGCHK(P != NULL); LTC_ARGCHK(Q != NULL); LTC_ARGCHK(R != NULL); LTC_ARGCHK(modulus != NULL); LTC_ARGCHK(Mp != NULL); mp = *((fp_digit*)Mp); fp_init(&t1); fp_init(&t2); fp_init(&x); fp_init(&y); fp_init(&z); /* should we dbl instead? */ fp_sub(modulus, Q->y, &t1); if ( (fp_cmp(P->x, Q->x) == FP_EQ) && (Q->z != NULL && fp_cmp(P->z, Q->z) == FP_EQ) && (fp_cmp(P->y, Q->y) == FP_EQ || fp_cmp(P->y, &t1) == FP_EQ)) { return tfm_ecc_projective_dbl_point(P, R, modulus, Mp); } fp_copy(P->x, &x); fp_copy(P->y, &y); fp_copy(P->z, &z); /* if Z is one then these are no-operations */ if (Q->z != NULL) { /* T1 = Z' * Z' */ fp_sqr(Q->z, &t1); fp_montgomery_reduce(&t1, modulus, mp); /* X = X * T1 */ fp_mul(&t1, &x, &x); fp_montgomery_reduce(&x, modulus, mp); /* T1 = Z' * T1 */ fp_mul(Q->z, &t1, &t1); fp_montgomery_reduce(&t1, modulus, mp); /* Y = Y * T1 */ fp_mul(&t1, &y, &y); fp_montgomery_reduce(&y, modulus, mp); } /* T1 = Z*Z */ fp_sqr(&z, &t1); fp_montgomery_reduce(&t1, modulus, mp); /* T2 = X' * T1 */ fp_mul(Q->x, &t1, &t2); fp_montgomery_reduce(&t2, modulus, mp); /* T1 = Z * T1 */ fp_mul(&z, &t1, &t1); fp_montgomery_reduce(&t1, modulus, mp); /* T1 = Y' * T1 */ fp_mul(Q->y, &t1, &t1); fp_montgomery_reduce(&t1, modulus, mp); /* Y = Y - T1 */ fp_sub(&y, &t1, &y); if (fp_cmp_d(&y, 0) == FP_LT) { fp_add(&y, modulus, &y); } /* T1 = 2T1 */ fp_add(&t1, &t1, &t1); if (fp_cmp(&t1, modulus) != FP_LT) { fp_sub(&t1, modulus, &t1); } /* T1 = Y + T1 */ fp_add(&t1, &y, &t1); if (fp_cmp(&t1, modulus) != FP_LT) { fp_sub(&t1, modulus, &t1); } /* X = X - T2 */ fp_sub(&x, &t2, &x); if (fp_cmp_d(&x, 0) == FP_LT) { fp_add(&x, modulus, &x); } /* T2 = 2T2 */ fp_add(&t2, &t2, &t2); if (fp_cmp(&t2, modulus) != FP_LT) { fp_sub(&t2, modulus, &t2); } /* T2 = X + T2 */ fp_add(&t2, &x, &t2); if (fp_cmp(&t2, modulus) != FP_LT) { fp_sub(&t2, modulus, &t2); } /* if Z' != 1 */ if (Q->z != NULL) { /* Z = Z * Z' */ fp_mul(&z, Q->z, &z); fp_montgomery_reduce(&z, modulus, mp); } /* Z = Z * X */ fp_mul(&z, &x, &z); fp_montgomery_reduce(&z, modulus, mp); /* T1 = T1 * X */ fp_mul(&t1, &x, &t1); fp_montgomery_reduce(&t1, modulus, mp); /* X = X * X */ fp_sqr(&x, &x); fp_montgomery_reduce(&x, modulus, mp); /* T2 = T2 * x */ fp_mul(&t2, &x, &t2); fp_montgomery_reduce(&t2, modulus, mp); /* T1 = T1 * X */ fp_mul(&t1, &x, &t1); fp_montgomery_reduce(&t1, modulus, mp); /* X = Y*Y */ fp_sqr(&y, &x); fp_montgomery_reduce(&x, modulus, mp); /* X = X - T2 */ fp_sub(&x, &t2, &x); if (fp_cmp_d(&x, 0) == FP_LT) { fp_add(&x, modulus, &x); } /* T2 = T2 - X */ fp_sub(&t2, &x, &t2); if (fp_cmp_d(&t2, 0) == FP_LT) { fp_add(&t2, modulus, &t2); } /* T2 = T2 - X */ fp_sub(&t2, &x, &t2); if (fp_cmp_d(&t2, 0) == FP_LT) { fp_add(&t2, modulus, &t2); } /* T2 = T2 * Y */ fp_mul(&t2, &y, &t2); fp_montgomery_reduce(&t2, modulus, mp); /* Y = T2 - T1 */ fp_sub(&t2, &t1, &y); if (fp_cmp_d(&y, 0) == FP_LT) { fp_add(&y, modulus, &y); } /* Y = Y/2 */ if (fp_isodd(&y)) { fp_add(&y, modulus, &y); } fp_div_2(&y, &y); fp_copy(&x, R->x); fp_copy(&y, R->y); fp_copy(&z, R->z); return CRYPT_OK; } #endif const ltc_math_descriptor tfm_desc = { "TomsFastMath", (int)DIGIT_BIT, &init, &init_copy, &deinit, &neg, ©, &set_int, &get_int, &get_digit, &get_digit_count, &compare, &compare_d, &count_bits, &count_lsb_bits, &twoexpt, &read_radix, &write_radix, &unsigned_size, &unsigned_write, &unsigned_read, &add, &addi, &sub, &subi, &mul, &muli, &sqr, ÷, &div_2, &modi, &gcd, &lcm, &mulmod, &sqrmod, &invmod, &montgomery_setup, &montgomery_normalization, &montgomery_reduce, &montgomery_deinit, &exptmod, &isprime, #ifdef MECC #ifdef MECC_FP <c_ecc_fp_mulmod, #else <c_ecc_mulmod, #endif /* MECC_FP */ #ifdef MECC_ACCEL &tfm_ecc_projective_add_point, &tfm_ecc_projective_dbl_point, #else <c_ecc_projective_add_point, <c_ecc_projective_dbl_point, #endif /* MECC_ACCEL */ <c_ecc_map, #ifdef LTC_ECC_SHAMIR #ifdef MECC_FP <c_ecc_fp_mul2add, #else <c_ecc_mul2add, #endif /* MECC_FP */ #else NULL, #endif /* LTC_ECC_SHAMIR */ #else NULL, NULL, NULL, NULL, NULL, #endif /* MECC */ #ifdef MRSA &rsa_make_key, &rsa_exptmod, #else NULL, NULL #endif }; #endif /* $Source: /cvs/libtom/libtomcrypt/src/math/tfm_desc.c,v $ */ /* $Revision: 1.26 $ */ /* $Date: 2006/12/03 00:39:56 $ */