Mercurial > dropbear
view dbrandom.c @ 1707:41a0ff8d5a89
void return types for curve25519
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Sat, 30 May 2020 00:05:49 +0800 |
parents | 6e5037ae2c1c |
children | 517fb7b62438 |
line wrap: on
line source
/* * Dropbear - a SSH2 server * * Copyright (c) 2002,2003 Matt Johnston * All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "includes.h" #include "buffer.h" #include "dbutil.h" #include "bignum.h" #include "dbrandom.h" #include "runopts.h" /* this is used to generate unique output from the same hashpool */ static uint32_t counter = 0; /* the max value for the counter, so it won't integer overflow */ #define MAX_COUNTER (1<<30) static unsigned char hashpool[SHA1_HASH_SIZE] = {0}; static int donerandinit = 0; #define INIT_SEED_SIZE 32 /* 256 bits */ /* The basic setup is we read some data from /dev/(u)random or prngd and hash it * into hashpool. To read data, we hash together current hashpool contents, * and a counter. We feed more data in by hashing the current pool and new * data into the pool. * * It is important to ensure that counter doesn't wrap around before we * feed in new entropy. * */ /* Pass wantlen=0 to hash an entire file */ static int process_file(hash_state *hs, const char *filename, unsigned int wantlen, int prngd) { int readfd = -1; unsigned int readcount; int ret = DROPBEAR_FAILURE; if (prngd) { #if DROPBEAR_USE_PRNGD readfd = connect_unix(filename); #endif } else { readfd = open(filename, O_RDONLY); } if (readfd < 0) { goto out; } readcount = 0; while (wantlen == 0 || readcount < wantlen) { int readlen, wantread; unsigned char readbuf[4096]; if (wantlen == 0) { wantread = sizeof(readbuf); } else { wantread = MIN(sizeof(readbuf), wantlen-readcount); } #if DROPBEAR_USE_PRNGD if (prngd) { char egdcmd[2]; egdcmd[0] = 0x02; /* blocking read */ egdcmd[1] = (unsigned char)wantread; if (write(readfd, egdcmd, 2) < 0) { dropbear_exit("Can't send command to egd"); } } #endif readlen = read(readfd, readbuf, wantread); if (readlen <= 0) { if (readlen < 0 && errno == EINTR) { continue; } if (readlen == 0 && wantlen == 0) { /* whole file was read as requested */ break; } goto out; } sha1_process(hs, readbuf, readlen); readcount += readlen; } ret = DROPBEAR_SUCCESS; out: close(readfd); return ret; } void addrandom(const unsigned char * buf, unsigned int len) { hash_state hs; #if DROPBEAR_FUZZ if (fuzz.fuzzing) { return; } #endif /* hash in the new seed data */ sha1_init(&hs); /* existing state (zeroes on startup) */ sha1_process(&hs, (void*)hashpool, sizeof(hashpool)); /* new */ sha1_process(&hs, buf, len); sha1_done(&hs, hashpool); } static void write_urandom() { #if DROPBEAR_FUZZ if (fuzz.fuzzing) { return; } #endif #if !DROPBEAR_USE_PRNGD /* This is opportunistic, don't worry about failure */ unsigned char buf[INIT_SEED_SIZE]; FILE *f = fopen(DROPBEAR_URANDOM_DEV, "w"); if (!f) { return; } genrandom(buf, sizeof(buf)); fwrite(buf, sizeof(buf), 1, f); fclose(f); #endif } #if DROPBEAR_FUZZ void fuzz_seed(void) { hash_state hs; sha1_init(&hs); sha1_process(&hs, "fuzzfuzzfuzz", strlen("fuzzfuzzfuzz")); sha1_done(&hs, hashpool); counter = 0; donerandinit = 1; } #endif #ifdef HAVE_GETRANDOM /* Reads entropy seed with getrandom(). * May block if the kernel isn't ready. * Return DROPBEAR_SUCCESS or DROPBEAR_FAILURE */ static int process_getrandom(hash_state *hs) { char buf[INIT_SEED_SIZE]; ssize_t ret; /* First try non-blocking so that we can warn about waiting */ ret = getrandom(buf, sizeof(buf), GRND_NONBLOCK); if (ret == -1) { if (errno == ENOSYS) { /* Old kernel */ return DROPBEAR_FAILURE; } /* Other errors fall through to blocking getrandom() */ TRACE(("first getrandom() failed: %d %s", errno, strerror(errno))) if (errno == EAGAIN) { dropbear_log(LOG_WARNING, "Waiting for kernel randomness to be initialised..."); } } /* Wait blocking if needed. Loop in case we get EINTR */ while (ret != sizeof(buf)) { ret = getrandom(buf, sizeof(buf), 0); if (ret == sizeof(buf)) { /* Success */ break; } if (ret == -1 && errno == EINTR) { /* Try again. */ continue; } if (ret >= 0) { TRACE(("Short read %zd from getrandom() shouldn't happen", ret)) /* Try again? */ continue; } /* Unexpected problem, fall back to /dev/urandom */ TRACE(("2nd getrandom() failed: %d %s", errno, strerror(errno))) break; } if (ret == sizeof(buf)) { /* Success, stir in the entropy */ sha1_process(hs, (void*)buf, sizeof(buf)); return DROPBEAR_SUCCESS; } return DROPBEAR_FAILURE; } #endif /* HAVE_GETRANDOM */ /* Initialise the prng from /dev/urandom or prngd. This function can * be called multiple times */ void seedrandom() { hash_state hs; pid_t pid; struct timeval tv; clock_t clockval; int urandom_seeded = 0; #if DROPBEAR_FUZZ if (fuzz.fuzzing) { return; } #endif /* hash in the new seed data */ sha1_init(&hs); /* existing state */ sha1_process(&hs, (void*)hashpool, sizeof(hashpool)); #ifdef HAVE_GETRANDOM if (process_getrandom(&hs) == DROPBEAR_SUCCESS) { urandom_seeded = 1; } #endif if (!urandom_seeded) { #if DROPBEAR_USE_PRNGD if (process_file(&hs, DROPBEAR_PRNGD_SOCKET, INIT_SEED_SIZE, 1) != DROPBEAR_SUCCESS) { dropbear_exit("Failure reading random device %s", DROPBEAR_PRNGD_SOCKET); urandom_seeded = 1; } #else /* non-blocking random source (probably /dev/urandom) */ if (process_file(&hs, DROPBEAR_URANDOM_DEV, INIT_SEED_SIZE, 0) != DROPBEAR_SUCCESS) { dropbear_exit("Failure reading random device %s", DROPBEAR_URANDOM_DEV); urandom_seeded = 1; } #endif } /* urandom_seeded */ /* A few other sources to fall back on. * Add more here for other platforms */ #ifdef __linux__ /* Seems to be a reasonable source of entropy from timers. Possibly hard * for even local attackers to reproduce */ process_file(&hs, "/proc/timer_list", 0, 0); /* Might help on systems with wireless */ process_file(&hs, "/proc/interrupts", 0, 0); process_file(&hs, "/proc/loadavg", 0, 0); process_file(&hs, "/proc/sys/kernel/random/entropy_avail", 0, 0); /* Mostly network visible but useful in some situations. * Limit size to avoid slowdowns on systems with lots of routes */ process_file(&hs, "/proc/net/netstat", 4096, 0); process_file(&hs, "/proc/net/dev", 4096, 0); process_file(&hs, "/proc/net/tcp", 4096, 0); /* Also includes interface lo */ process_file(&hs, "/proc/net/rt_cache", 4096, 0); process_file(&hs, "/proc/vmstat", 0, 0); #endif pid = getpid(); sha1_process(&hs, (void*)&pid, sizeof(pid)); /* gettimeofday() doesn't completely fill out struct timeval on OS X (10.8.3), avoid valgrind warnings by clearing it first */ memset(&tv, 0x0, sizeof(tv)); gettimeofday(&tv, NULL); sha1_process(&hs, (void*)&tv, sizeof(tv)); clockval = clock(); sha1_process(&hs, (void*)&clockval, sizeof(clockval)); /* When a private key is read by the client or server it will * be added to the hashpool - see runopts.c */ sha1_done(&hs, hashpool); counter = 0; donerandinit = 1; /* Feed it all back into /dev/urandom - this might help if Dropbear * is running from inetd and gets new state each time */ write_urandom(); } /* return len bytes of pseudo-random data */ void genrandom(unsigned char* buf, unsigned int len) { hash_state hs; unsigned char hash[SHA1_HASH_SIZE]; unsigned int copylen; if (!donerandinit) { dropbear_exit("seedrandom not done"); } while (len > 0) { sha1_init(&hs); sha1_process(&hs, (void*)hashpool, sizeof(hashpool)); sha1_process(&hs, (void*)&counter, sizeof(counter)); sha1_done(&hs, hash); counter++; if (counter > MAX_COUNTER) { seedrandom(); } copylen = MIN(len, SHA1_HASH_SIZE); memcpy(buf, hash, copylen); len -= copylen; buf += copylen; } m_burn(hash, sizeof(hash)); } /* Generates a random mp_int. * max is a *mp_int specifying an upper bound. * rand must be an initialised *mp_int for the result. * the result rand satisfies: 0 < rand < max * */ void gen_random_mpint(mp_int *max, mp_int *rand) { unsigned char *randbuf = NULL; unsigned int len = 0; const unsigned char masks[] = {0xff, 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f, 0x7f}; const int size_bits = mp_count_bits(max); len = size_bits / 8; if ((size_bits % 8) != 0) { len += 1; } randbuf = (unsigned char*)m_malloc(len); do { genrandom(randbuf, len); /* Mask out the unrequired bits - mp_read_unsigned_bin expects * MSB first.*/ randbuf[0] &= masks[size_bits % 8]; bytes_to_mp(rand, randbuf, len); /* keep regenerating until we get one satisfying * 0 < rand < max */ } while (!(mp_cmp(rand, max) == MP_LT && mp_cmp_d(rand, 0) == MP_GT)); m_burn(randbuf, len); m_free(randbuf); }