view libtomcrypt/src/ciphers/rc2.c @ 1790:42745af83b7d

Introduce extra delay before closing unauthenticated sessions To make it harder for attackers, introduce a delay to keep an unauthenticated session open a bit longer, thus blocking a connection slot until after the delay. Without this, while there is a limit on the amount of attempts an attacker can make at the same time (MAX_UNAUTH_PER_IP), the time taken by dropbear to handle one attempt is still short and thus for each of the allowed parallel attempts many attempts can be chained one after the other. The attempt rate is then: "MAX_UNAUTH_PER_IP / <process time of one attempt>". With the delay, this rate becomes: "MAX_UNAUTH_PER_IP / UNAUTH_CLOSE_DELAY".
author Thomas De Schampheleire <thomas.de_schampheleire@nokia.com>
date Wed, 15 Feb 2017 13:53:04 +0100
parents 6dba84798cd5
children
line wrap: on
line source

/* LibTomCrypt, modular cryptographic library -- Tom St Denis
 *
 * LibTomCrypt is a library that provides various cryptographic
 * algorithms in a highly modular and flexible manner.
 *
 * The library is free for all purposes without any express
 * guarantee it works.
 */
/**********************************************************************\
* To commemorate the 1996 RSA Data Security Conference, the following  *
* code is released into the public domain by its author.  Prost!       *
*                                                                      *
* This cipher uses 16-bit words and little-endian byte ordering.       *
* I wonder which processor it was optimized for?                       *
*                                                                      *
* Thanks to CodeView, SoftIce, and D86 for helping bring this code to  *
* the public.                                                          *
\**********************************************************************/
#include "tomcrypt.h"

/**
  @file rc2.c
  Implementation of RC2 with fixed effective key length of 64bits
*/

#ifdef LTC_RC2

const struct ltc_cipher_descriptor rc2_desc = {
   "rc2",
   12, 8, 128, 8, 16,
   &rc2_setup,
   &rc2_ecb_encrypt,
   &rc2_ecb_decrypt,
   &rc2_test,
   &rc2_done,
   &rc2_keysize,
   NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
};

/* 256-entry permutation table, probably derived somehow from pi */
static const unsigned char permute[256] = {
        217,120,249,196, 25,221,181,237, 40,233,253,121, 74,160,216,157,
        198,126, 55,131, 43,118, 83,142, 98, 76,100,136, 68,139,251,162,
         23,154, 89,245,135,179, 79, 19, 97, 69,109,141,  9,129,125, 50,
        189,143, 64,235,134,183,123, 11,240,149, 33, 34, 92,107, 78,130,
         84,214,101,147,206, 96,178, 28,115, 86,192, 20,167,140,241,220,
         18,117,202, 31, 59,190,228,209, 66, 61,212, 48,163, 60,182, 38,
        111,191, 14,218, 70,105,  7, 87, 39,242, 29,155,188,148, 67,  3,
        248, 17,199,246,144,239, 62,231,  6,195,213, 47,200,102, 30,215,
          8,232,234,222,128, 82,238,247,132,170,114,172, 53, 77,106, 42,
        150, 26,210,113, 90, 21, 73,116, 75,159,208, 94,  4, 24,164,236,
        194,224, 65,110, 15, 81,203,204, 36,145,175, 80,161,244,112, 57,
        153,124, 58,133, 35,184,180,122,252,  2, 54, 91, 37, 85,151, 49,
         45, 93,250,152,227,138,146,174,  5,223, 41, 16,103,108,186,201,
        211,  0,230,207,225,158,168, 44, 99, 22,  1, 63, 88,226,137,169,
         13, 56, 52, 27,171, 51,255,176,187, 72, 12, 95,185,177,205, 46,
        197,243,219, 71,229,165,156,119, 10,166, 32,104,254,127,193,173
};

 /**
    Initialize the RC2 block cipher
    @param key The symmetric key you wish to pass
    @param keylen The key length in bytes
    @param bits The effective key length in bits
    @param num_rounds The number of rounds desired (0 for default)
    @param skey The key in as scheduled by this function.
    @return CRYPT_OK if successful
 */
int rc2_setup_ex(const unsigned char *key, int keylen, int bits, int num_rounds, symmetric_key *skey)
{
   unsigned *xkey = skey->rc2.xkey;
   unsigned char tmp[128];
   unsigned T8, TM;
   int i;

   LTC_ARGCHK(key  != NULL);
   LTC_ARGCHK(skey != NULL);

   if (keylen == 0 || keylen > 128 || bits > 1024) {
      return CRYPT_INVALID_KEYSIZE;
   }
   if (bits == 0) {
      bits = 1024;
   }

   if (num_rounds != 0 && num_rounds != 16) {
      return CRYPT_INVALID_ROUNDS;
   }

   for (i = 0; i < keylen; i++) {
      tmp[i] = key[i] & 255;
   }

   /* Phase 1: Expand input key to 128 bytes */
   if (keylen < 128) {
      for (i = keylen; i < 128; i++) {
         tmp[i] = permute[(tmp[i - 1] + tmp[i - keylen]) & 255];
      }
   }

   /* Phase 2 - reduce effective key size to "bits" */
   T8   = (unsigned)(bits+7)>>3;
   TM   = (255 >> (unsigned)(7 & -bits));
   tmp[128 - T8] = permute[tmp[128 - T8] & TM];
   for (i = 127 - T8; i >= 0; i--) {
      tmp[i] = permute[tmp[i + 1] ^ tmp[i + T8]];
   }

   /* Phase 3 - copy to xkey in little-endian order */
   for (i = 0; i < 64; i++) {
      xkey[i] =  (unsigned)tmp[2*i] + ((unsigned)tmp[2*i+1] << 8);
   }

#ifdef LTC_CLEAN_STACK
   zeromem(tmp, sizeof(tmp));
#endif

   return CRYPT_OK;
}

/**
   Initialize the RC2 block cipher

     The effective key length is here always keylen * 8

   @param key The symmetric key you wish to pass
   @param keylen The key length in bytes
   @param num_rounds The number of rounds desired (0 for default)
   @param skey The key in as scheduled by this function.
   @return CRYPT_OK if successful
*/
int rc2_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
{
   return rc2_setup_ex(key, keylen, keylen * 8, num_rounds, skey);
}

/**********************************************************************\
* Encrypt an 8-byte block of plaintext using the given key.            *
\**********************************************************************/
/**
  Encrypts a block of text with RC2
  @param pt The input plaintext (8 bytes)
  @param ct The output ciphertext (8 bytes)
  @param skey The key as scheduled
  @return CRYPT_OK if successful
*/
#ifdef LTC_CLEAN_STACK
static int _rc2_ecb_encrypt( const unsigned char *pt,
                            unsigned char *ct,
                            symmetric_key *skey)
#else
int rc2_ecb_encrypt( const unsigned char *pt,
                            unsigned char *ct,
                            symmetric_key *skey)
#endif
{
    unsigned *xkey;
    unsigned x76, x54, x32, x10, i;

    LTC_ARGCHK(pt  != NULL);
    LTC_ARGCHK(ct != NULL);
    LTC_ARGCHK(skey   != NULL);

    xkey = skey->rc2.xkey;

    x76 = ((unsigned)pt[7] << 8) + (unsigned)pt[6];
    x54 = ((unsigned)pt[5] << 8) + (unsigned)pt[4];
    x32 = ((unsigned)pt[3] << 8) + (unsigned)pt[2];
    x10 = ((unsigned)pt[1] << 8) + (unsigned)pt[0];

    for (i = 0; i < 16; i++) {
        x10 = (x10 + (x32 & ~x76) + (x54 & x76) + xkey[4*i+0]) & 0xFFFF;
        x10 = ((x10 << 1) | (x10 >> 15));

        x32 = (x32 + (x54 & ~x10) + (x76 & x10) + xkey[4*i+1]) & 0xFFFF;
        x32 = ((x32 << 2) | (x32 >> 14));

        x54 = (x54 + (x76 & ~x32) + (x10 & x32) + xkey[4*i+2]) & 0xFFFF;
        x54 = ((x54 << 3) | (x54 >> 13));

        x76 = (x76 + (x10 & ~x54) + (x32 & x54) + xkey[4*i+3]) & 0xFFFF;
        x76 = ((x76 << 5) | (x76 >> 11));

        if (i == 4 || i == 10) {
            x10 = (x10 + xkey[x76 & 63]) & 0xFFFF;
            x32 = (x32 + xkey[x10 & 63]) & 0xFFFF;
            x54 = (x54 + xkey[x32 & 63]) & 0xFFFF;
            x76 = (x76 + xkey[x54 & 63]) & 0xFFFF;
        }
    }

    ct[0] = (unsigned char)x10;
    ct[1] = (unsigned char)(x10 >> 8);
    ct[2] = (unsigned char)x32;
    ct[3] = (unsigned char)(x32 >> 8);
    ct[4] = (unsigned char)x54;
    ct[5] = (unsigned char)(x54 >> 8);
    ct[6] = (unsigned char)x76;
    ct[7] = (unsigned char)(x76 >> 8);

    return CRYPT_OK;
}

#ifdef LTC_CLEAN_STACK
int rc2_ecb_encrypt( const unsigned char *pt,
                            unsigned char *ct,
                            symmetric_key *skey)
{
    int err = _rc2_ecb_encrypt(pt, ct, skey);
    burn_stack(sizeof(unsigned *) + sizeof(unsigned) * 5);
    return err;
}
#endif

/**********************************************************************\
* Decrypt an 8-byte block of ciphertext using the given key.           *
\**********************************************************************/
/**
  Decrypts a block of text with RC2
  @param ct The input ciphertext (8 bytes)
  @param pt The output plaintext (8 bytes)
  @param skey The key as scheduled
  @return CRYPT_OK if successful
*/
#ifdef LTC_CLEAN_STACK
static int _rc2_ecb_decrypt( const unsigned char *ct,
                            unsigned char *pt,
                            symmetric_key *skey)
#else
int rc2_ecb_decrypt( const unsigned char *ct,
                            unsigned char *pt,
                            symmetric_key *skey)
#endif
{
    unsigned x76, x54, x32, x10;
    unsigned *xkey;
    int i;

    LTC_ARGCHK(pt  != NULL);
    LTC_ARGCHK(ct != NULL);
    LTC_ARGCHK(skey   != NULL);

    xkey = skey->rc2.xkey;

    x76 = ((unsigned)ct[7] << 8) + (unsigned)ct[6];
    x54 = ((unsigned)ct[5] << 8) + (unsigned)ct[4];
    x32 = ((unsigned)ct[3] << 8) + (unsigned)ct[2];
    x10 = ((unsigned)ct[1] << 8) + (unsigned)ct[0];

    for (i = 15; i >= 0; i--) {
        if (i == 4 || i == 10) {
            x76 = (x76 - xkey[x54 & 63]) & 0xFFFF;
            x54 = (x54 - xkey[x32 & 63]) & 0xFFFF;
            x32 = (x32 - xkey[x10 & 63]) & 0xFFFF;
            x10 = (x10 - xkey[x76 & 63]) & 0xFFFF;
        }

        x76 = ((x76 << 11) | (x76 >> 5));
        x76 = (x76 - ((x10 & ~x54) + (x32 & x54) + xkey[4*i+3])) & 0xFFFF;

        x54 = ((x54 << 13) | (x54 >> 3));
        x54 = (x54 - ((x76 & ~x32) + (x10 & x32) + xkey[4*i+2])) & 0xFFFF;

        x32 = ((x32 << 14) | (x32 >> 2));
        x32 = (x32 - ((x54 & ~x10) + (x76 & x10) + xkey[4*i+1])) & 0xFFFF;

        x10 = ((x10 << 15) | (x10 >> 1));
        x10 = (x10 - ((x32 & ~x76) + (x54 & x76) + xkey[4*i+0])) & 0xFFFF;
    }

    pt[0] = (unsigned char)x10;
    pt[1] = (unsigned char)(x10 >> 8);
    pt[2] = (unsigned char)x32;
    pt[3] = (unsigned char)(x32 >> 8);
    pt[4] = (unsigned char)x54;
    pt[5] = (unsigned char)(x54 >> 8);
    pt[6] = (unsigned char)x76;
    pt[7] = (unsigned char)(x76 >> 8);

    return CRYPT_OK;
}

#ifdef LTC_CLEAN_STACK
int rc2_ecb_decrypt( const unsigned char *ct,
                            unsigned char *pt,
                            symmetric_key *skey)
{
    int err = _rc2_ecb_decrypt(ct, pt, skey);
    burn_stack(sizeof(unsigned *) + sizeof(unsigned) * 4 + sizeof(int));
    return err;
}
#endif

/**
  Performs a self-test of the RC2 block cipher
  @return CRYPT_OK if functional, CRYPT_NOP if self-test has been disabled
*/
int rc2_test(void)
{
 #ifndef LTC_TEST
    return CRYPT_NOP;
 #else
   static const struct {
        int keylen, bits;
        unsigned char key[16], pt[8], ct[8];
   } tests[] = {

   { 8, 63,
     { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
       0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
     { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
     { 0xeb, 0xb7, 0x73, 0xf9, 0x93, 0x27, 0x8e, 0xff }
   },
   { 8, 64,
     { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
       0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
     { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff },
     { 0x27, 0x8b, 0x27, 0xe4, 0x2e, 0x2f, 0x0d, 0x49 }
   },
   { 8, 64,
     { 0x30, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
       0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
     { 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01 },
     { 0x30, 0x64, 0x9e, 0xdf, 0x9b, 0xe7, 0xd2, 0xc2 }
   },
   { 1, 64,
     { 0x88, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
       0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
     { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
     { 0x61, 0xa8, 0xa2, 0x44, 0xad, 0xac, 0xcc, 0xf0 }
   },
   { 7, 64,
     { 0x88, 0xbc, 0xa9, 0x0e, 0x90, 0x87, 0x5a, 0x00,
       0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
     { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
     { 0x6c, 0xcf, 0x43, 0x08, 0x97, 0x4c, 0x26, 0x7f }
   },
   { 16, 64,
     { 0x88, 0xbc, 0xa9, 0x0e, 0x90, 0x87, 0x5a, 0x7f,
       0x0f, 0x79, 0xc3, 0x84, 0x62, 0x7b, 0xaf, 0xb2 },
     { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
     { 0x1a, 0x80, 0x7d, 0x27, 0x2b, 0xbe, 0x5d, 0xb1 }
   },
   { 16, 128,
     { 0x88, 0xbc, 0xa9, 0x0e, 0x90, 0x87, 0x5a, 0x7f,
       0x0f, 0x79, 0xc3, 0x84, 0x62, 0x7b, 0xaf, 0xb2 },
     { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
     { 0x22, 0x69, 0x55, 0x2a, 0xb0, 0xf8, 0x5c, 0xa6 }
   }
  };
    int x, y, err;
    symmetric_key skey;
    unsigned char tmp[2][8];

    for (x = 0; x < (int)(sizeof(tests) / sizeof(tests[0])); x++) {
        zeromem(tmp, sizeof(tmp));
        if (tests[x].bits == (tests[x].keylen * 8)) {
           if ((err = rc2_setup(tests[x].key, tests[x].keylen, 0, &skey)) != CRYPT_OK) {
              return err;
           }
        }
        else {
           if ((err = rc2_setup_ex(tests[x].key, tests[x].keylen, tests[x].bits, 0, &skey)) != CRYPT_OK) {
              return err;
           }
        }

        rc2_ecb_encrypt(tests[x].pt, tmp[0], &skey);
        rc2_ecb_decrypt(tmp[0], tmp[1], &skey);

        if (compare_testvector(tmp[0], 8, tests[x].ct, 8, "RC2 CT", x) ||
              compare_testvector(tmp[1], 8, tests[x].pt, 8, "RC2 PT", x)) {
           return CRYPT_FAIL_TESTVECTOR;
        }

      /* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */
      for (y = 0; y < 8; y++) tmp[0][y] = 0;
      for (y = 0; y < 1000; y++) rc2_ecb_encrypt(tmp[0], tmp[0], &skey);
      for (y = 0; y < 1000; y++) rc2_ecb_decrypt(tmp[0], tmp[0], &skey);
      for (y = 0; y < 8; y++) if (tmp[0][y] != 0) return CRYPT_FAIL_TESTVECTOR;
    }
    return CRYPT_OK;
   #endif
}

/** Terminate the context
   @param skey    The scheduled key
*/
void rc2_done(symmetric_key *skey)
{
  LTC_UNUSED_PARAM(skey);
}

/**
  Gets suitable key size
  @param keysize [in/out] The length of the recommended key (in bytes).  This function will store the suitable size back in this variable.
  @return CRYPT_OK if the input key size is acceptable.
*/
int rc2_keysize(int *keysize)
{
   LTC_ARGCHK(keysize != NULL);
   if (*keysize < 1) {
       return CRYPT_INVALID_KEYSIZE;
   } else if (*keysize > 128) {
       *keysize = 128;
   }
   return CRYPT_OK;
}

#endif




/* ref:         $Format:%D$ */
/* git commit:  $Format:%H$ */
/* commit time: $Format:%ai$ */