Mercurial > dropbear
view libtomcrypt/src/ciphers/rc6.c @ 1790:42745af83b7d
Introduce extra delay before closing unauthenticated sessions
To make it harder for attackers, introduce a delay to keep an
unauthenticated session open a bit longer, thus blocking a connection
slot until after the delay.
Without this, while there is a limit on the amount of attempts an attacker
can make at the same time (MAX_UNAUTH_PER_IP), the time taken by dropbear to
handle one attempt is still short and thus for each of the allowed parallel
attempts many attempts can be chained one after the other. The attempt rate
is then:
"MAX_UNAUTH_PER_IP / <process time of one attempt>".
With the delay, this rate becomes:
"MAX_UNAUTH_PER_IP / UNAUTH_CLOSE_DELAY".
author | Thomas De Schampheleire <thomas.de_schampheleire@nokia.com> |
---|---|
date | Wed, 15 Feb 2017 13:53:04 +0100 |
parents | 6dba84798cd5 |
children |
line wrap: on
line source
/* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. */ /** @file rc6.c LTC_RC6 code by Tom St Denis */ #include "tomcrypt.h" #ifdef LTC_RC6 const struct ltc_cipher_descriptor rc6_desc = { "rc6", 3, 8, 128, 16, 20, &rc6_setup, &rc6_ecb_encrypt, &rc6_ecb_decrypt, &rc6_test, &rc6_done, &rc6_keysize, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL }; static const ulong32 stab[44] = { 0xb7e15163UL, 0x5618cb1cUL, 0xf45044d5UL, 0x9287be8eUL, 0x30bf3847UL, 0xcef6b200UL, 0x6d2e2bb9UL, 0x0b65a572UL, 0xa99d1f2bUL, 0x47d498e4UL, 0xe60c129dUL, 0x84438c56UL, 0x227b060fUL, 0xc0b27fc8UL, 0x5ee9f981UL, 0xfd21733aUL, 0x9b58ecf3UL, 0x399066acUL, 0xd7c7e065UL, 0x75ff5a1eUL, 0x1436d3d7UL, 0xb26e4d90UL, 0x50a5c749UL, 0xeedd4102UL, 0x8d14babbUL, 0x2b4c3474UL, 0xc983ae2dUL, 0x67bb27e6UL, 0x05f2a19fUL, 0xa42a1b58UL, 0x42619511UL, 0xe0990ecaUL, 0x7ed08883UL, 0x1d08023cUL, 0xbb3f7bf5UL, 0x5976f5aeUL, 0xf7ae6f67UL, 0x95e5e920UL, 0x341d62d9UL, 0xd254dc92UL, 0x708c564bUL, 0x0ec3d004UL, 0xacfb49bdUL, 0x4b32c376UL }; /** Initialize the LTC_RC6 block cipher @param key The symmetric key you wish to pass @param keylen The key length in bytes @param num_rounds The number of rounds desired (0 for default) @param skey The key in as scheduled by this function. @return CRYPT_OK if successful */ #ifdef LTC_CLEAN_STACK static int _rc6_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey) #else int rc6_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey) #endif { ulong32 L[64], S[50], A, B, i, j, v, s, l; LTC_ARGCHK(key != NULL); LTC_ARGCHK(skey != NULL); /* test parameters */ if (num_rounds != 0 && num_rounds != 20) { return CRYPT_INVALID_ROUNDS; } /* key must be between 64 and 1024 bits */ if (keylen < 8 || keylen > 128) { return CRYPT_INVALID_KEYSIZE; } /* copy the key into the L array */ for (A = i = j = 0; i < (ulong32)keylen; ) { A = (A << 8) | ((ulong32)(key[i++] & 255)); if (!(i & 3)) { L[j++] = BSWAP(A); A = 0; } } /* handle odd sized keys */ if (keylen & 3) { A <<= (8 * (4 - (keylen&3))); L[j++] = BSWAP(A); } /* setup the S array */ XMEMCPY(S, stab, 44 * sizeof(stab[0])); /* mix buffer */ s = 3 * MAX(44, j); l = j; for (A = B = i = j = v = 0; v < s; v++) { A = S[i] = ROLc(S[i] + A + B, 3); B = L[j] = ROL(L[j] + A + B, (A+B)); if (++i == 44) { i = 0; } if (++j == l) { j = 0; } } /* copy to key */ for (i = 0; i < 44; i++) { skey->rc6.K[i] = S[i]; } return CRYPT_OK; } #ifdef LTC_CLEAN_STACK int rc6_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey) { int x; x = _rc6_setup(key, keylen, num_rounds, skey); burn_stack(sizeof(ulong32) * 122); return x; } #endif /** Encrypts a block of text with LTC_RC6 @param pt The input plaintext (16 bytes) @param ct The output ciphertext (16 bytes) @param skey The key as scheduled */ #ifdef LTC_CLEAN_STACK static int _rc6_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey) #else int rc6_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey) #endif { ulong32 a,b,c,d,t,u, *K; int r; LTC_ARGCHK(skey != NULL); LTC_ARGCHK(pt != NULL); LTC_ARGCHK(ct != NULL); LOAD32L(a,&pt[0]);LOAD32L(b,&pt[4]);LOAD32L(c,&pt[8]);LOAD32L(d,&pt[12]); b += skey->rc6.K[0]; d += skey->rc6.K[1]; #define RND(a,b,c,d) \ t = (b * (b + b + 1)); t = ROLc(t, 5); \ u = (d * (d + d + 1)); u = ROLc(u, 5); \ a = ROL(a^t,u) + K[0]; \ c = ROL(c^u,t) + K[1]; K += 2; K = skey->rc6.K + 2; for (r = 0; r < 20; r += 4) { RND(a,b,c,d); RND(b,c,d,a); RND(c,d,a,b); RND(d,a,b,c); } #undef RND a += skey->rc6.K[42]; c += skey->rc6.K[43]; STORE32L(a,&ct[0]);STORE32L(b,&ct[4]);STORE32L(c,&ct[8]);STORE32L(d,&ct[12]); return CRYPT_OK; } #ifdef LTC_CLEAN_STACK int rc6_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey) { int err = _rc6_ecb_encrypt(pt, ct, skey); burn_stack(sizeof(ulong32) * 6 + sizeof(int)); return err; } #endif /** Decrypts a block of text with LTC_RC6 @param ct The input ciphertext (16 bytes) @param pt The output plaintext (16 bytes) @param skey The key as scheduled */ #ifdef LTC_CLEAN_STACK static int _rc6_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey) #else int rc6_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey) #endif { ulong32 a,b,c,d,t,u, *K; int r; LTC_ARGCHK(skey != NULL); LTC_ARGCHK(pt != NULL); LTC_ARGCHK(ct != NULL); LOAD32L(a,&ct[0]);LOAD32L(b,&ct[4]);LOAD32L(c,&ct[8]);LOAD32L(d,&ct[12]); a -= skey->rc6.K[42]; c -= skey->rc6.K[43]; #define RND(a,b,c,d) \ t = (b * (b + b + 1)); t = ROLc(t, 5); \ u = (d * (d + d + 1)); u = ROLc(u, 5); \ c = ROR(c - K[1], t) ^ u; \ a = ROR(a - K[0], u) ^ t; K -= 2; K = skey->rc6.K + 40; for (r = 0; r < 20; r += 4) { RND(d,a,b,c); RND(c,d,a,b); RND(b,c,d,a); RND(a,b,c,d); } #undef RND b -= skey->rc6.K[0]; d -= skey->rc6.K[1]; STORE32L(a,&pt[0]);STORE32L(b,&pt[4]);STORE32L(c,&pt[8]);STORE32L(d,&pt[12]); return CRYPT_OK; } #ifdef LTC_CLEAN_STACK int rc6_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey) { int err = _rc6_ecb_decrypt(ct, pt, skey); burn_stack(sizeof(ulong32) * 6 + sizeof(int)); return err; } #endif /** Performs a self-test of the LTC_RC6 block cipher @return CRYPT_OK if functional, CRYPT_NOP if self-test has been disabled */ int rc6_test(void) { #ifndef LTC_TEST return CRYPT_NOP; #else static const struct { int keylen; unsigned char key[32], pt[16], ct[16]; } tests[] = { { 16, { 0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef, 0x01, 0x12, 0x23, 0x34, 0x45, 0x56, 0x67, 0x78, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, { 0x02, 0x13, 0x24, 0x35, 0x46, 0x57, 0x68, 0x79, 0x8a, 0x9b, 0xac, 0xbd, 0xce, 0xdf, 0xe0, 0xf1 }, { 0x52, 0x4e, 0x19, 0x2f, 0x47, 0x15, 0xc6, 0x23, 0x1f, 0x51, 0xf6, 0x36, 0x7e, 0xa4, 0x3f, 0x18 } }, { 24, { 0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef, 0x01, 0x12, 0x23, 0x34, 0x45, 0x56, 0x67, 0x78, 0x89, 0x9a, 0xab, 0xbc, 0xcd, 0xde, 0xef, 0xf0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, { 0x02, 0x13, 0x24, 0x35, 0x46, 0x57, 0x68, 0x79, 0x8a, 0x9b, 0xac, 0xbd, 0xce, 0xdf, 0xe0, 0xf1 }, { 0x68, 0x83, 0x29, 0xd0, 0x19, 0xe5, 0x05, 0x04, 0x1e, 0x52, 0xe9, 0x2a, 0xf9, 0x52, 0x91, 0xd4 } }, { 32, { 0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef, 0x01, 0x12, 0x23, 0x34, 0x45, 0x56, 0x67, 0x78, 0x89, 0x9a, 0xab, 0xbc, 0xcd, 0xde, 0xef, 0xf0, 0x10, 0x32, 0x54, 0x76, 0x98, 0xba, 0xdc, 0xfe }, { 0x02, 0x13, 0x24, 0x35, 0x46, 0x57, 0x68, 0x79, 0x8a, 0x9b, 0xac, 0xbd, 0xce, 0xdf, 0xe0, 0xf1 }, { 0xc8, 0x24, 0x18, 0x16, 0xf0, 0xd7, 0xe4, 0x89, 0x20, 0xad, 0x16, 0xa1, 0x67, 0x4e, 0x5d, 0x48 } } }; unsigned char tmp[2][16]; int x, y, err; symmetric_key key; for (x = 0; x < (int)(sizeof(tests) / sizeof(tests[0])); x++) { /* setup key */ if ((err = rc6_setup(tests[x].key, tests[x].keylen, 0, &key)) != CRYPT_OK) { return err; } /* encrypt and decrypt */ rc6_ecb_encrypt(tests[x].pt, tmp[0], &key); rc6_ecb_decrypt(tmp[0], tmp[1], &key); /* compare */ if (compare_testvector(tmp[0], 16, tests[x].ct, 16, "RC6 Encrypt", x) || compare_testvector(tmp[1], 16, tests[x].pt, 16, "RC6 Decrypt", x)) { return CRYPT_FAIL_TESTVECTOR; } /* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */ for (y = 0; y < 16; y++) tmp[0][y] = 0; for (y = 0; y < 1000; y++) rc6_ecb_encrypt(tmp[0], tmp[0], &key); for (y = 0; y < 1000; y++) rc6_ecb_decrypt(tmp[0], tmp[0], &key); for (y = 0; y < 16; y++) if (tmp[0][y] != 0) return CRYPT_FAIL_TESTVECTOR; } return CRYPT_OK; #endif } /** Terminate the context @param skey The scheduled key */ void rc6_done(symmetric_key *skey) { LTC_UNUSED_PARAM(skey); } /** Gets suitable key size @param keysize [in/out] The length of the recommended key (in bytes). This function will store the suitable size back in this variable. @return CRYPT_OK if the input key size is acceptable. */ int rc6_keysize(int *keysize) { LTC_ARGCHK(keysize != NULL); if (*keysize < 8) { return CRYPT_INVALID_KEYSIZE; } else if (*keysize > 128) { *keysize = 128; } return CRYPT_OK; } #endif /*LTC_RC6*/ /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */