Mercurial > dropbear
view libtomcrypt/src/pk/ecc/ltc_ecc_projective_dbl_point.c @ 1790:42745af83b7d
Introduce extra delay before closing unauthenticated sessions
To make it harder for attackers, introduce a delay to keep an
unauthenticated session open a bit longer, thus blocking a connection
slot until after the delay.
Without this, while there is a limit on the amount of attempts an attacker
can make at the same time (MAX_UNAUTH_PER_IP), the time taken by dropbear to
handle one attempt is still short and thus for each of the allowed parallel
attempts many attempts can be chained one after the other. The attempt rate
is then:
"MAX_UNAUTH_PER_IP / <process time of one attempt>".
With the delay, this rate becomes:
"MAX_UNAUTH_PER_IP / UNAUTH_CLOSE_DELAY".
author | Thomas De Schampheleire <thomas.de_schampheleire@nokia.com> |
---|---|
date | Wed, 15 Feb 2017 13:53:04 +0100 |
parents | 6dba84798cd5 |
children |
line wrap: on
line source
/* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * guarantee it works. */ /* Implements ECC over Z/pZ for curve y^2 = x^3 - 3x + b * * All curves taken from NIST recommendation paper of July 1999 * Available at http://csrc.nist.gov/cryptval/dss.htm */ #include "tomcrypt.h" /** @file ltc_ecc_projective_dbl_point.c ECC Crypto, Tom St Denis */ #if defined(LTC_MECC) && (!defined(LTC_MECC_ACCEL) || defined(LTM_DESC)) /** Double an ECC point @param P The point to double @param R [out] The destination of the double @param modulus The modulus of the field the ECC curve is in @param mp The "b" value from montgomery_setup() @return CRYPT_OK on success */ int ltc_ecc_projective_dbl_point(ecc_point *P, ecc_point *R, void *modulus, void *mp) { void *t1, *t2; int err; LTC_ARGCHK(P != NULL); LTC_ARGCHK(R != NULL); LTC_ARGCHK(modulus != NULL); LTC_ARGCHK(mp != NULL); if ((err = mp_init_multi(&t1, &t2, NULL)) != CRYPT_OK) { return err; } if (P != R) { if ((err = mp_copy(P->x, R->x)) != CRYPT_OK) { goto done; } if ((err = mp_copy(P->y, R->y)) != CRYPT_OK) { goto done; } if ((err = mp_copy(P->z, R->z)) != CRYPT_OK) { goto done; } } /* t1 = Z * Z */ if ((err = mp_sqr(R->z, t1)) != CRYPT_OK) { goto done; } if ((err = mp_montgomery_reduce(t1, modulus, mp)) != CRYPT_OK) { goto done; } /* Z = Y * Z */ if ((err = mp_mul(R->z, R->y, R->z)) != CRYPT_OK) { goto done; } if ((err = mp_montgomery_reduce(R->z, modulus, mp)) != CRYPT_OK) { goto done; } /* Z = 2Z */ if ((err = mp_add(R->z, R->z, R->z)) != CRYPT_OK) { goto done; } if (mp_cmp(R->z, modulus) != LTC_MP_LT) { if ((err = mp_sub(R->z, modulus, R->z)) != CRYPT_OK) { goto done; } } /* T2 = X - T1 */ if ((err = mp_sub(R->x, t1, t2)) != CRYPT_OK) { goto done; } if (mp_cmp_d(t2, 0) == LTC_MP_LT) { if ((err = mp_add(t2, modulus, t2)) != CRYPT_OK) { goto done; } } /* T1 = X + T1 */ if ((err = mp_add(t1, R->x, t1)) != CRYPT_OK) { goto done; } if (mp_cmp(t1, modulus) != LTC_MP_LT) { if ((err = mp_sub(t1, modulus, t1)) != CRYPT_OK) { goto done; } } /* T2 = T1 * T2 */ if ((err = mp_mul(t1, t2, t2)) != CRYPT_OK) { goto done; } if ((err = mp_montgomery_reduce(t2, modulus, mp)) != CRYPT_OK) { goto done; } /* T1 = 2T2 */ if ((err = mp_add(t2, t2, t1)) != CRYPT_OK) { goto done; } if (mp_cmp(t1, modulus) != LTC_MP_LT) { if ((err = mp_sub(t1, modulus, t1)) != CRYPT_OK) { goto done; } } /* T1 = T1 + T2 */ if ((err = mp_add(t1, t2, t1)) != CRYPT_OK) { goto done; } if (mp_cmp(t1, modulus) != LTC_MP_LT) { if ((err = mp_sub(t1, modulus, t1)) != CRYPT_OK) { goto done; } } /* Y = 2Y */ if ((err = mp_add(R->y, R->y, R->y)) != CRYPT_OK) { goto done; } if (mp_cmp(R->y, modulus) != LTC_MP_LT) { if ((err = mp_sub(R->y, modulus, R->y)) != CRYPT_OK) { goto done; } } /* Y = Y * Y */ if ((err = mp_sqr(R->y, R->y)) != CRYPT_OK) { goto done; } if ((err = mp_montgomery_reduce(R->y, modulus, mp)) != CRYPT_OK) { goto done; } /* T2 = Y * Y */ if ((err = mp_sqr(R->y, t2)) != CRYPT_OK) { goto done; } if ((err = mp_montgomery_reduce(t2, modulus, mp)) != CRYPT_OK) { goto done; } /* T2 = T2/2 */ if (mp_isodd(t2)) { if ((err = mp_add(t2, modulus, t2)) != CRYPT_OK) { goto done; } } if ((err = mp_div_2(t2, t2)) != CRYPT_OK) { goto done; } /* Y = Y * X */ if ((err = mp_mul(R->y, R->x, R->y)) != CRYPT_OK) { goto done; } if ((err = mp_montgomery_reduce(R->y, modulus, mp)) != CRYPT_OK) { goto done; } /* X = T1 * T1 */ if ((err = mp_sqr(t1, R->x)) != CRYPT_OK) { goto done; } if ((err = mp_montgomery_reduce(R->x, modulus, mp)) != CRYPT_OK) { goto done; } /* X = X - Y */ if ((err = mp_sub(R->x, R->y, R->x)) != CRYPT_OK) { goto done; } if (mp_cmp_d(R->x, 0) == LTC_MP_LT) { if ((err = mp_add(R->x, modulus, R->x)) != CRYPT_OK) { goto done; } } /* X = X - Y */ if ((err = mp_sub(R->x, R->y, R->x)) != CRYPT_OK) { goto done; } if (mp_cmp_d(R->x, 0) == LTC_MP_LT) { if ((err = mp_add(R->x, modulus, R->x)) != CRYPT_OK) { goto done; } } /* Y = Y - X */ if ((err = mp_sub(R->y, R->x, R->y)) != CRYPT_OK) { goto done; } if (mp_cmp_d(R->y, 0) == LTC_MP_LT) { if ((err = mp_add(R->y, modulus, R->y)) != CRYPT_OK) { goto done; } } /* Y = Y * T1 */ if ((err = mp_mul(R->y, t1, R->y)) != CRYPT_OK) { goto done; } if ((err = mp_montgomery_reduce(R->y, modulus, mp)) != CRYPT_OK) { goto done; } /* Y = Y - T2 */ if ((err = mp_sub(R->y, t2, R->y)) != CRYPT_OK) { goto done; } if (mp_cmp_d(R->y, 0) == LTC_MP_LT) { if ((err = mp_add(R->y, modulus, R->y)) != CRYPT_OK) { goto done; } } err = CRYPT_OK; done: mp_clear_multi(t1, t2, NULL); return err; } #endif /* ref: $Format:%D$ */ /* git commit: $Format:%H$ */ /* commit time: $Format:%ai$ */