view libtomcrypt/testprof/ecc_test.c @ 1790:42745af83b7d

Introduce extra delay before closing unauthenticated sessions To make it harder for attackers, introduce a delay to keep an unauthenticated session open a bit longer, thus blocking a connection slot until after the delay. Without this, while there is a limit on the amount of attempts an attacker can make at the same time (MAX_UNAUTH_PER_IP), the time taken by dropbear to handle one attempt is still short and thus for each of the allowed parallel attempts many attempts can be chained one after the other. The attempt rate is then: "MAX_UNAUTH_PER_IP / <process time of one attempt>". With the delay, this rate becomes: "MAX_UNAUTH_PER_IP / UNAUTH_CLOSE_DELAY".
author Thomas De Schampheleire <thomas.de_schampheleire@nokia.com>
date Wed, 15 Feb 2017 13:53:04 +0100
parents f849a5ca2efc
children
line wrap: on
line source

#include <tomcrypt_test.h>

#ifdef LTC_MECC

static int sizes[] = {
#ifdef ECC112
14,
#endif
#ifdef ECC128
16,
#endif
#ifdef ECC160
20,
#endif
#ifdef ECC192
24,
#endif
#ifdef ECC224
28,
#endif
#ifdef ECC256
32,
#endif
#ifdef ECC384
48,
#endif
#ifdef ECC521
65
#endif
};

#ifdef LTC_ECC_SHAMIR
int ecc_test_shamir(void)
{
   void *modulus, *mp, *kA, *kB, *rA, *rB;
   ecc_point *G, *A, *B, *C1, *C2;
   int x, y, z;
   unsigned char buf[ECC_BUF_SIZE];

   DO(mp_init_multi(&kA, &kB, &rA, &rB, &modulus, NULL));
   LTC_ARGCHK((G  = ltc_ecc_new_point()) != NULL);
   LTC_ARGCHK((A  = ltc_ecc_new_point()) != NULL);
   LTC_ARGCHK((B  = ltc_ecc_new_point()) != NULL);
   LTC_ARGCHK((C1 = ltc_ecc_new_point()) != NULL);
   LTC_ARGCHK((C2 = ltc_ecc_new_point()) != NULL);

   for (x = 0; x < (int)(sizeof(sizes)/sizeof(sizes[0])); x++) {
       /* get the base point */
       for (z = 0; ltc_ecc_sets[z].name; z++) {
           if (sizes[z] < ltc_ecc_sets[z].size) break;
       }
       LTC_ARGCHK(ltc_ecc_sets[z].name != NULL);

       /* load it */
       DO(mp_read_radix(G->x, ltc_ecc_sets[z].Gx, 16));
       DO(mp_read_radix(G->y, ltc_ecc_sets[z].Gy, 16));
       DO(mp_set(G->z, 1));
       DO(mp_read_radix(modulus, ltc_ecc_sets[z].prime, 16));
       DO(mp_montgomery_setup(modulus, &mp));

       /* do 100 random tests */
       for (y = 0; y < 100; y++) {
          /* pick a random r1, r2 */
          LTC_ARGCHK(yarrow_read(buf, sizes[x], &yarrow_prng) == sizes[x]);
          DO(mp_read_unsigned_bin(rA, buf, sizes[x]));
          LTC_ARGCHK(yarrow_read(buf, sizes[x], &yarrow_prng) == sizes[x]);
          DO(mp_read_unsigned_bin(rB, buf, sizes[x]));

          /* compute rA * G = A */
          DO(ltc_mp.ecc_ptmul(rA, G, A, modulus, 1));
       
          /* compute rB * G = B */
          DO(ltc_mp.ecc_ptmul(rB, G, B, modulus, 1));

          /* pick a random kA, kB */
          LTC_ARGCHK(yarrow_read(buf, sizes[x], &yarrow_prng) == sizes[x]);
          DO(mp_read_unsigned_bin(kA, buf, sizes[x]));
          LTC_ARGCHK(yarrow_read(buf, sizes[x], &yarrow_prng) == sizes[x]);
          DO(mp_read_unsigned_bin(kB, buf, sizes[x]));

          /* now, compute kA*A + kB*B = C1 using the older method */
          DO(ltc_mp.ecc_ptmul(kA, A, C1, modulus, 0));
          DO(ltc_mp.ecc_ptmul(kB, B, C2, modulus, 0));
          DO(ltc_mp.ecc_ptadd(C1, C2, C1, modulus, mp));
          DO(ltc_mp.ecc_map(C1, modulus, mp));

          /* now compute using mul2add */
          DO(ltc_mp.ecc_mul2add(A, kA, B, kB, C2, modulus));

          /* is they the sames?  */
          if ((mp_cmp(C1->x, C2->x) != LTC_MP_EQ) || (mp_cmp(C1->y, C2->y) != LTC_MP_EQ) || (mp_cmp(C1->z, C2->z) != LTC_MP_EQ)) {
             fprintf(stderr, "ECC failed shamir test: size=%d, testno=%d\n", sizes[x], y);
             return 1;
          }
      }
      mp_montgomery_free(mp);
  }
  ltc_ecc_del_point(C2);
  ltc_ecc_del_point(C1);
  ltc_ecc_del_point(B);
  ltc_ecc_del_point(A);
  ltc_ecc_del_point(G);
  mp_clear_multi(kA, kB, rA, rB, modulus, NULL);
  return 0;
}
#endif

int ecc_tests (void)
{
  unsigned char buf[4][4096];
  unsigned long x, y, z, s;
  int           stat, stat2;
  ecc_key usera, userb, pubKey, privKey;
	
  DO(ecc_test ());
  DO(ecc_test ());
  DO(ecc_test ());
  DO(ecc_test ());
  DO(ecc_test ());

  for (s = 0; s < (sizeof(sizes)/sizeof(sizes[0])); s++) {
     /* make up two keys */
     DO(ecc_make_key (&yarrow_prng, find_prng ("yarrow"), sizes[s], &usera));
     DO(ecc_make_key (&yarrow_prng, find_prng ("yarrow"), sizes[s], &userb));

     /* make the shared secret */
     x = sizeof(buf[0]);
     DO(ecc_shared_secret (&usera, &userb, buf[0], &x));

     y = sizeof(buf[1]);
     DO(ecc_shared_secret (&userb, &usera, buf[1], &y));

     if (y != x) {
       fprintf(stderr, "ecc Shared keys are not same size.");
       return 1;
     }

     if (memcmp (buf[0], buf[1], x)) {
       fprintf(stderr, "ecc Shared keys not same contents.");
       return 1;
     }

     /* now export userb */
     y = sizeof(buf[0]);
     DO(ecc_export (buf[1], &y, PK_PUBLIC, &userb));
     ecc_free (&userb);

     /* import and make the shared secret again */
     DO(ecc_import (buf[1], y, &userb));

     z = sizeof(buf[0]);
     DO(ecc_shared_secret (&usera, &userb, buf[2], &z));

     if (z != x) {
       fprintf(stderr, "failed.  Size don't match?");
       return 1;
     }
     if (memcmp (buf[0], buf[2], x)) {
       fprintf(stderr, "Failed.  Contents didn't match.");
       return 1;
     }

     /* export with ANSI X9.63 */
     y = sizeof(buf[1]);
     DO(ecc_ansi_x963_export(&userb, buf[1], &y));
     ecc_free (&userb);

     /* now import the ANSI key */
     DO(ecc_ansi_x963_import(buf[1], y, &userb));

     /* shared secret */
     z = sizeof(buf[0]);
     DO(ecc_shared_secret (&usera, &userb, buf[2], &z));

     if (z != x) {
       fprintf(stderr, "failed.  Size don't match?");
       return 1;
     }
     if (memcmp (buf[0], buf[2], x)) {
       fprintf(stderr, "Failed.  Contents didn't match.");
       return 1;
     }

     ecc_free (&usera);
     ecc_free (&userb);

     /* test encrypt_key */
     DO(ecc_make_key (&yarrow_prng, find_prng ("yarrow"), sizes[s], &usera));

     /* export key */
     x = sizeof(buf[0]);
     DO(ecc_export(buf[0], &x, PK_PUBLIC, &usera));
     DO(ecc_import(buf[0], x, &pubKey));
     x = sizeof(buf[0]);
     DO(ecc_export(buf[0], &x, PK_PRIVATE, &usera));
     DO(ecc_import(buf[0], x, &privKey));

     for (x = 0; x < 32; x++) {
        buf[0][x] = x;
     }
     y = sizeof (buf[1]);
     DO(ecc_encrypt_key (buf[0], 32, buf[1], &y, &yarrow_prng, find_prng ("yarrow"), find_hash ("sha256"), &pubKey));
     zeromem (buf[0], sizeof (buf[0]));
     x = sizeof (buf[0]);
     DO(ecc_decrypt_key (buf[1], y, buf[0], &x, &privKey));
     if (x != 32) {
       fprintf(stderr, "Failed (length)");
       return 1;
     }
     for (x = 0; x < 32; x++) {
        if (buf[0][x] != x) {
           fprintf(stderr, "Failed (contents)");
           return 1;
        }
     }
     /* test sign_hash */
     for (x = 0; x < 16; x++) {
        buf[0][x] = x;
     }
     x = sizeof (buf[1]);
     DO(ecc_sign_hash (buf[0], 16, buf[1], &x, &yarrow_prng, find_prng ("yarrow"), &privKey));
     DO(ecc_verify_hash (buf[1], x, buf[0], 16, &stat, &pubKey));
     buf[0][0] ^= 1;
     DO(ecc_verify_hash (buf[1], x, buf[0], 16, &stat2, &privKey));
     if (!(stat == 1 && stat2 == 0)) { 
        fprintf(stderr, "ecc_verify_hash failed %d, %d, ", stat, stat2);
        return 1;
     }
     ecc_free (&usera); 
     ecc_free (&pubKey);
     ecc_free (&privKey);
  }
#ifdef LTC_ECC_SHAMIR
  return ecc_test_shamir();
#else
  return 0;
#endif
}

#else

int ecc_tests(void)
{
   fprintf(stderr, "NOP");
   return 0;
}

#endif

/* $Source$ */
/* $Revision$ */
/* $Date$ */