Mercurial > dropbear
view libtommath/bn_mp_gcd.c @ 1790:42745af83b7d
Introduce extra delay before closing unauthenticated sessions
To make it harder for attackers, introduce a delay to keep an
unauthenticated session open a bit longer, thus blocking a connection
slot until after the delay.
Without this, while there is a limit on the amount of attempts an attacker
can make at the same time (MAX_UNAUTH_PER_IP), the time taken by dropbear to
handle one attempt is still short and thus for each of the allowed parallel
attempts many attempts can be chained one after the other. The attempt rate
is then:
"MAX_UNAUTH_PER_IP / <process time of one attempt>".
With the delay, this rate becomes:
"MAX_UNAUTH_PER_IP / UNAUTH_CLOSE_DELAY".
author | Thomas De Schampheleire <thomas.de_schampheleire@nokia.com> |
---|---|
date | Wed, 15 Feb 2017 13:53:04 +0100 |
parents | 1051e4eea25a |
children |
line wrap: on
line source
#include "tommath_private.h" #ifdef BN_MP_GCD_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* Greatest Common Divisor using the binary method */ mp_err mp_gcd(const mp_int *a, const mp_int *b, mp_int *c) { mp_int u, v; int k, u_lsb, v_lsb; mp_err err; /* either zero than gcd is the largest */ if (MP_IS_ZERO(a)) { return mp_abs(b, c); } if (MP_IS_ZERO(b)) { return mp_abs(a, c); } /* get copies of a and b we can modify */ if ((err = mp_init_copy(&u, a)) != MP_OKAY) { return err; } if ((err = mp_init_copy(&v, b)) != MP_OKAY) { goto LBL_U; } /* must be positive for the remainder of the algorithm */ u.sign = v.sign = MP_ZPOS; /* B1. Find the common power of two for u and v */ u_lsb = mp_cnt_lsb(&u); v_lsb = mp_cnt_lsb(&v); k = MP_MIN(u_lsb, v_lsb); if (k > 0) { /* divide the power of two out */ if ((err = mp_div_2d(&u, k, &u, NULL)) != MP_OKAY) { goto LBL_V; } if ((err = mp_div_2d(&v, k, &v, NULL)) != MP_OKAY) { goto LBL_V; } } /* divide any remaining factors of two out */ if (u_lsb != k) { if ((err = mp_div_2d(&u, u_lsb - k, &u, NULL)) != MP_OKAY) { goto LBL_V; } } if (v_lsb != k) { if ((err = mp_div_2d(&v, v_lsb - k, &v, NULL)) != MP_OKAY) { goto LBL_V; } } while (!MP_IS_ZERO(&v)) { /* make sure v is the largest */ if (mp_cmp_mag(&u, &v) == MP_GT) { /* swap u and v to make sure v is >= u */ mp_exch(&u, &v); } /* subtract smallest from largest */ if ((err = s_mp_sub(&v, &u, &v)) != MP_OKAY) { goto LBL_V; } /* Divide out all factors of two */ if ((err = mp_div_2d(&v, mp_cnt_lsb(&v), &v, NULL)) != MP_OKAY) { goto LBL_V; } } /* multiply by 2**k which we divided out at the beginning */ if ((err = mp_mul_2d(&u, k, c)) != MP_OKAY) { goto LBL_V; } c->sign = MP_ZPOS; err = MP_OKAY; LBL_V: mp_clear(&u); LBL_U: mp_clear(&v); return err; } #endif