view libtommath/bn_mp_prime_frobenius_underwood.c @ 1790:42745af83b7d

Introduce extra delay before closing unauthenticated sessions To make it harder for attackers, introduce a delay to keep an unauthenticated session open a bit longer, thus blocking a connection slot until after the delay. Without this, while there is a limit on the amount of attempts an attacker can make at the same time (MAX_UNAUTH_PER_IP), the time taken by dropbear to handle one attempt is still short and thus for each of the allowed parallel attempts many attempts can be chained one after the other. The attempt rate is then: "MAX_UNAUTH_PER_IP / <process time of one attempt>". With the delay, this rate becomes: "MAX_UNAUTH_PER_IP / UNAUTH_CLOSE_DELAY".
author Thomas De Schampheleire <thomas.de_schampheleire@nokia.com>
date Wed, 15 Feb 2017 13:53:04 +0100
parents 1051e4eea25a
children
line wrap: on
line source

#include "tommath_private.h"
#ifdef BN_MP_PRIME_FROBENIUS_UNDERWOOD_C

/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */

/*
 *  See file bn_mp_prime_is_prime.c or the documentation in doc/bn.tex for the details
 */
#ifndef LTM_USE_ONLY_MR

#ifdef MP_8BIT
/*
 * floor of positive solution of
 * (2^16)-1 = (a+4)*(2*a+5)
 * TODO: Both values are smaller than N^(1/4), would have to use a bigint
 *       for a instead but any a biger than about 120 are already so rare that
 *       it is possible to ignore them and still get enough pseudoprimes.
 *       But it is still a restriction of the set of available pseudoprimes
 *       which makes this implementation less secure if used stand-alone.
 */
#define LTM_FROBENIUS_UNDERWOOD_A 177
#else
#define LTM_FROBENIUS_UNDERWOOD_A 32764
#endif
mp_err mp_prime_frobenius_underwood(const mp_int *N, mp_bool *result)
{
   mp_int T1z, T2z, Np1z, sz, tz;

   int a, ap2, length, i, j;
   mp_err err;

   *result = MP_NO;

   if ((err = mp_init_multi(&T1z, &T2z, &Np1z, &sz, &tz, NULL)) != MP_OKAY) {
      return err;
   }

   for (a = 0; a < LTM_FROBENIUS_UNDERWOOD_A; a++) {
      /* TODO: That's ugly! No, really, it is! */
      if ((a==2) || (a==4) || (a==7) || (a==8) || (a==10) ||
          (a==14) || (a==18) || (a==23) || (a==26) || (a==28)) {
         continue;
      }
      /* (32764^2 - 4) < 2^31, no bigint for >MP_8BIT needed) */
      mp_set_u32(&T1z, (uint32_t)a);

      if ((err = mp_sqr(&T1z, &T1z)) != MP_OKAY)                  goto LBL_FU_ERR;

      if ((err = mp_sub_d(&T1z, 4uL, &T1z)) != MP_OKAY)           goto LBL_FU_ERR;

      if ((err = mp_kronecker(&T1z, N, &j)) != MP_OKAY)           goto LBL_FU_ERR;

      if (j == -1) {
         break;
      }

      if (j == 0) {
         /* composite */
         goto LBL_FU_ERR;
      }
   }
   /* Tell it a composite and set return value accordingly */
   if (a >= LTM_FROBENIUS_UNDERWOOD_A) {
      err = MP_ITER;
      goto LBL_FU_ERR;
   }
   /* Composite if N and (a+4)*(2*a+5) are not coprime */
   mp_set_u32(&T1z, (uint32_t)((a+4)*((2*a)+5)));

   if ((err = mp_gcd(N, &T1z, &T1z)) != MP_OKAY)                  goto LBL_FU_ERR;

   if (!((T1z.used == 1) && (T1z.dp[0] == 1u)))                   goto LBL_FU_ERR;

   ap2 = a + 2;
   if ((err = mp_add_d(N, 1uL, &Np1z)) != MP_OKAY)                goto LBL_FU_ERR;

   mp_set(&sz, 1uL);
   mp_set(&tz, 2uL);
   length = mp_count_bits(&Np1z);

   for (i = length - 2; i >= 0; i--) {
      /*
       * temp = (sz*(a*sz+2*tz))%N;
       * tz   = ((tz-sz)*(tz+sz))%N;
       * sz   = temp;
       */
      if ((err = mp_mul_2(&tz, &T2z)) != MP_OKAY)                 goto LBL_FU_ERR;

      /* a = 0 at about 50% of the cases (non-square and odd input) */
      if (a != 0) {
         if ((err = mp_mul_d(&sz, (mp_digit)a, &T1z)) != MP_OKAY) goto LBL_FU_ERR;
         if ((err = mp_add(&T1z, &T2z, &T2z)) != MP_OKAY)         goto LBL_FU_ERR;
      }

      if ((err = mp_mul(&T2z, &sz, &T1z)) != MP_OKAY)             goto LBL_FU_ERR;
      if ((err = mp_sub(&tz, &sz, &T2z)) != MP_OKAY)              goto LBL_FU_ERR;
      if ((err = mp_add(&sz, &tz, &sz)) != MP_OKAY)               goto LBL_FU_ERR;
      if ((err = mp_mul(&sz, &T2z, &tz)) != MP_OKAY)              goto LBL_FU_ERR;
      if ((err = mp_mod(&tz, N, &tz)) != MP_OKAY)                 goto LBL_FU_ERR;
      if ((err = mp_mod(&T1z, N, &sz)) != MP_OKAY)                goto LBL_FU_ERR;
      if (s_mp_get_bit(&Np1z, (unsigned int)i) == MP_YES) {
         /*
          *  temp = (a+2) * sz + tz
          *  tz   = 2 * tz - sz
          *  sz   = temp
          */
         if (a == 0) {
            if ((err = mp_mul_2(&sz, &T1z)) != MP_OKAY)           goto LBL_FU_ERR;
         } else {
            if ((err = mp_mul_d(&sz, (mp_digit)ap2, &T1z)) != MP_OKAY) goto LBL_FU_ERR;
         }
         if ((err = mp_add(&T1z, &tz, &T1z)) != MP_OKAY)          goto LBL_FU_ERR;
         if ((err = mp_mul_2(&tz, &T2z)) != MP_OKAY)              goto LBL_FU_ERR;
         if ((err = mp_sub(&T2z, &sz, &tz)) != MP_OKAY)           goto LBL_FU_ERR;
         mp_exch(&sz, &T1z);
      }
   }

   mp_set_u32(&T1z, (uint32_t)((2 * a) + 5));
   if ((err = mp_mod(&T1z, N, &T1z)) != MP_OKAY)                  goto LBL_FU_ERR;
   if (MP_IS_ZERO(&sz) && (mp_cmp(&tz, &T1z) == MP_EQ)) {
      *result = MP_YES;
   }

LBL_FU_ERR:
   mp_clear_multi(&tz, &sz, &Np1z, &T2z, &T1z, NULL);
   return err;
}

#endif
#endif