view libtommath/bn_mp_prime_is_prime.c @ 1790:42745af83b7d

Introduce extra delay before closing unauthenticated sessions To make it harder for attackers, introduce a delay to keep an unauthenticated session open a bit longer, thus blocking a connection slot until after the delay. Without this, while there is a limit on the amount of attempts an attacker can make at the same time (MAX_UNAUTH_PER_IP), the time taken by dropbear to handle one attempt is still short and thus for each of the allowed parallel attempts many attempts can be chained one after the other. The attempt rate is then: "MAX_UNAUTH_PER_IP / <process time of one attempt>". With the delay, this rate becomes: "MAX_UNAUTH_PER_IP / UNAUTH_CLOSE_DELAY".
author Thomas De Schampheleire <thomas.de_schampheleire@nokia.com>
date Wed, 15 Feb 2017 13:53:04 +0100
parents 1051e4eea25a
children
line wrap: on
line source

#include "tommath_private.h"
#ifdef BN_MP_PRIME_IS_PRIME_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */

/* portable integer log of two with small footprint */
static unsigned int s_floor_ilog2(int value)
{
   unsigned int r = 0;
   while ((value >>= 1) != 0) {
      r++;
   }
   return r;
}


mp_err mp_prime_is_prime(const mp_int *a, int t, mp_bool *result)
{
   mp_int  b;
   int     ix, p_max = 0, size_a, len;
   mp_bool res;
   mp_err  err;
   unsigned int fips_rand, mask;

   /* default to no */
   *result = MP_NO;

   /* Some shortcuts */
   /* N > 3 */
   if (a->used == 1) {
      if ((a->dp[0] == 0u) || (a->dp[0] == 1u)) {
         *result = MP_NO;
         return MP_OKAY;
      }
      if (a->dp[0] == 2u) {
         *result = MP_YES;
         return MP_OKAY;
      }
   }

   /* N must be odd */
   if (MP_IS_EVEN(a)) {
      return MP_OKAY;
   }
   /* N is not a perfect square: floor(sqrt(N))^2 != N */
   if ((err = mp_is_square(a, &res)) != MP_OKAY) {
      return err;
   }
   if (res != MP_NO) {
      return MP_OKAY;
   }

   /* is the input equal to one of the primes in the table? */
   for (ix = 0; ix < PRIVATE_MP_PRIME_TAB_SIZE; ix++) {
      if (mp_cmp_d(a, s_mp_prime_tab[ix]) == MP_EQ) {
         *result = MP_YES;
         return MP_OKAY;
      }
   }
#ifdef MP_8BIT
   /* The search in the loop above was exhaustive in this case */
   if ((a->used == 1) && (PRIVATE_MP_PRIME_TAB_SIZE >= 31)) {
      return MP_OKAY;
   }
#endif

   /* first perform trial division */
   if ((err = s_mp_prime_is_divisible(a, &res)) != MP_OKAY) {
      return err;
   }

   /* return if it was trivially divisible */
   if (res == MP_YES) {
      return MP_OKAY;
   }

   /*
       Run the Miller-Rabin test with base 2 for the BPSW test.
    */
   if ((err = mp_init_set(&b, 2uL)) != MP_OKAY) {
      return err;
   }

   if ((err = mp_prime_miller_rabin(a, &b, &res)) != MP_OKAY) {
      goto LBL_B;
   }
   if (res == MP_NO) {
      goto LBL_B;
   }
   /*
      Rumours have it that Mathematica does a second M-R test with base 3.
      Other rumours have it that their strong L-S test is slightly different.
      It does not hurt, though, beside a bit of extra runtime.
   */
   b.dp[0]++;
   if ((err = mp_prime_miller_rabin(a, &b, &res)) != MP_OKAY) {
      goto LBL_B;
   }
   if (res == MP_NO) {
      goto LBL_B;
   }

   /*
    * Both, the Frobenius-Underwood test and the the Lucas-Selfridge test are quite
    * slow so if speed is an issue, define LTM_USE_ONLY_MR to use M-R tests with
    * bases 2, 3 and t random bases.
    */
#ifndef LTM_USE_ONLY_MR
   if (t >= 0) {
      /*
       * Use a Frobenius-Underwood test instead of the Lucas-Selfridge test for
       * MP_8BIT (It is unknown if the Lucas-Selfridge test works with 16-bit
       * integers but the necesssary analysis is on the todo-list).
       */
#if defined (MP_8BIT) || defined (LTM_USE_FROBENIUS_TEST)
      err = mp_prime_frobenius_underwood(a, &res);
      if ((err != MP_OKAY) && (err != MP_ITER)) {
         goto LBL_B;
      }
      if (res == MP_NO) {
         goto LBL_B;
      }
#else
      if ((err = mp_prime_strong_lucas_selfridge(a, &res)) != MP_OKAY) {
         goto LBL_B;
      }
      if (res == MP_NO) {
         goto LBL_B;
      }
#endif
   }
#endif

   /* run at least one Miller-Rabin test with a random base */
   if (t == 0) {
      t = 1;
   }

   /*
      Only recommended if the input range is known to be < 3317044064679887385961981

      It uses the bases necessary for a deterministic M-R test if the input is
      smaller than  3317044064679887385961981
      The caller has to check the size.
      TODO: can be made a bit finer grained but comparing is not free.
   */
   if (t < 0) {
      /*
          Sorenson, Jonathan; Webster, Jonathan (2015).
           "Strong Pseudoprimes to Twelve Prime Bases".
       */
      /* 0x437ae92817f9fc85b7e5 = 318665857834031151167461 */
      if ((err =   mp_read_radix(&b, "437ae92817f9fc85b7e5", 16)) != MP_OKAY) {
         goto LBL_B;
      }

      if (mp_cmp(a, &b) == MP_LT) {
         p_max = 12;
      } else {
         /* 0x2be6951adc5b22410a5fd = 3317044064679887385961981 */
         if ((err = mp_read_radix(&b, "2be6951adc5b22410a5fd", 16)) != MP_OKAY) {
            goto LBL_B;
         }

         if (mp_cmp(a, &b) == MP_LT) {
            p_max = 13;
         } else {
            err = MP_VAL;
            goto LBL_B;
         }
      }

      /* we did bases 2 and 3  already, skip them */
      for (ix = 2; ix < p_max; ix++) {
         mp_set(&b, s_mp_prime_tab[ix]);
         if ((err = mp_prime_miller_rabin(a, &b, &res)) != MP_OKAY) {
            goto LBL_B;
         }
         if (res == MP_NO) {
            goto LBL_B;
         }
      }
   }
   /*
       Do "t" M-R tests with random bases between 3 and "a".
       See Fips 186.4 p. 126ff
   */
   else if (t > 0) {
      /*
       * The mp_digit's have a defined bit-size but the size of the
       * array a.dp is a simple 'int' and this library can not assume full
       * compliance to the current C-standard (ISO/IEC 9899:2011) because
       * it gets used for small embeded processors, too. Some of those MCUs
       * have compilers that one cannot call standard compliant by any means.
       * Hence the ugly type-fiddling in the following code.
       */
      size_a = mp_count_bits(a);
      mask = (1u << s_floor_ilog2(size_a)) - 1u;
      /*
         Assuming the General Rieman hypothesis (never thought to write that in a
         comment) the upper bound can be lowered to  2*(log a)^2.
         E. Bach, "Explicit bounds for primality testing and related problems,"
         Math. Comp. 55 (1990), 355-380.

            size_a = (size_a/10) * 7;
            len = 2 * (size_a * size_a);

         E.g.: a number of size 2^2048 would be reduced to the upper limit

            floor(2048/10)*7 = 1428
            2 * 1428^2       = 4078368

         (would have been ~4030331.9962 with floats and natural log instead)
         That number is smaller than 2^28, the default bit-size of mp_digit.
      */

      /*
        How many tests, you might ask? Dana Jacobsen of Math::Prime::Util fame
        does exactly 1. In words: one. Look at the end of _GMP_is_prime() in
        Math-Prime-Util-GMP-0.50/primality.c if you do not believe it.

        The function mp_rand() goes to some length to use a cryptographically
        good PRNG. That also means that the chance to always get the same base
        in the loop is non-zero, although very low.
        If the BPSW test and/or the addtional Frobenious test have been
        performed instead of just the Miller-Rabin test with the bases 2 and 3,
        a single extra test should suffice, so such a very unlikely event
        will not do much harm.

        To preemptivly answer the dangling question: no, a witness does not
        need to be prime.
      */
      for (ix = 0; ix < t; ix++) {
         /* mp_rand() guarantees the first digit to be non-zero */
         if ((err = mp_rand(&b, 1)) != MP_OKAY) {
            goto LBL_B;
         }
         /*
          * Reduce digit before casting because mp_digit might be bigger than
          * an unsigned int and "mask" on the other side is most probably not.
          */
         fips_rand = (unsigned int)(b.dp[0] & (mp_digit) mask);
#ifdef MP_8BIT
         /*
          * One 8-bit digit is too small, so concatenate two if the size of
          * unsigned int allows for it.
          */
         if ((MP_SIZEOF_BITS(unsigned int)/2) >= MP_SIZEOF_BITS(mp_digit)) {
            if ((err = mp_rand(&b, 1)) != MP_OKAY) {
               goto LBL_B;
            }
            fips_rand <<= MP_SIZEOF_BITS(mp_digit);
            fips_rand |= (unsigned int) b.dp[0];
            fips_rand &= mask;
         }
#endif
         if (fips_rand > (unsigned int)(INT_MAX - MP_DIGIT_BIT)) {
            len = INT_MAX / MP_DIGIT_BIT;
         } else {
            len = (((int)fips_rand + MP_DIGIT_BIT) / MP_DIGIT_BIT);
         }
         /*  Unlikely. */
         if (len < 0) {
            ix--;
            continue;
         }
         /*
          * As mentioned above, one 8-bit digit is too small and
          * although it can only happen in the unlikely case that
          * an "unsigned int" is smaller than 16 bit a simple test
          * is cheap and the correction even cheaper.
          */
#ifdef MP_8BIT
         /* All "a" < 2^8 have been caught before */
         if (len == 1) {
            len++;
         }
#endif
         if ((err = mp_rand(&b, len)) != MP_OKAY) {
            goto LBL_B;
         }
         /*
          * That number might got too big and the witness has to be
          * smaller than "a"
          */
         len = mp_count_bits(&b);
         if (len >= size_a) {
            len = (len - size_a) + 1;
            if ((err = mp_div_2d(&b, len, &b, NULL)) != MP_OKAY) {
               goto LBL_B;
            }
         }
         /* Although the chance for b <= 3 is miniscule, try again. */
         if (mp_cmp_d(&b, 3uL) != MP_GT) {
            ix--;
            continue;
         }
         if ((err = mp_prime_miller_rabin(a, &b, &res)) != MP_OKAY) {
            goto LBL_B;
         }
         if (res == MP_NO) {
            goto LBL_B;
         }
      }
   }

   /* passed the test */
   *result = MP_YES;
LBL_B:
   mp_clear(&b);
   return err;
}

#endif