view libtommath/bn_mp_prime_next_prime.c @ 1790:42745af83b7d

Introduce extra delay before closing unauthenticated sessions To make it harder for attackers, introduce a delay to keep an unauthenticated session open a bit longer, thus blocking a connection slot until after the delay. Without this, while there is a limit on the amount of attempts an attacker can make at the same time (MAX_UNAUTH_PER_IP), the time taken by dropbear to handle one attempt is still short and thus for each of the allowed parallel attempts many attempts can be chained one after the other. The attempt rate is then: "MAX_UNAUTH_PER_IP / <process time of one attempt>". With the delay, this rate becomes: "MAX_UNAUTH_PER_IP / UNAUTH_CLOSE_DELAY".
author Thomas De Schampheleire <thomas.de_schampheleire@nokia.com>
date Wed, 15 Feb 2017 13:53:04 +0100
parents 1051e4eea25a
children
line wrap: on
line source

#include "tommath_private.h"
#ifdef BN_MP_PRIME_NEXT_PRIME_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */

/* finds the next prime after the number "a" using "t" trials
 * of Miller-Rabin.
 *
 * bbs_style = 1 means the prime must be congruent to 3 mod 4
 */
mp_err mp_prime_next_prime(mp_int *a, int t, int bbs_style)
{
   int      x, y;
   mp_ord   cmp;
   mp_err   err;
   mp_bool  res = MP_NO;
   mp_digit res_tab[PRIVATE_MP_PRIME_TAB_SIZE], step, kstep;
   mp_int   b;

   /* force positive */
   a->sign = MP_ZPOS;

   /* simple algo if a is less than the largest prime in the table */
   if (mp_cmp_d(a, s_mp_prime_tab[PRIVATE_MP_PRIME_TAB_SIZE-1]) == MP_LT) {
      /* find which prime it is bigger than "a" */
      for (x = 0; x < PRIVATE_MP_PRIME_TAB_SIZE; x++) {
         cmp = mp_cmp_d(a, s_mp_prime_tab[x]);
         if (cmp == MP_EQ) {
            continue;
         }
         if (cmp != MP_GT) {
            if ((bbs_style == 1) && ((s_mp_prime_tab[x] & 3u) != 3u)) {
               /* try again until we get a prime congruent to 3 mod 4 */
               continue;
            } else {
               mp_set(a, s_mp_prime_tab[x]);
               return MP_OKAY;
            }
         }
      }
      /* fall through to the sieve */
   }

   /* generate a prime congruent to 3 mod 4 or 1/3 mod 4? */
   if (bbs_style == 1) {
      kstep   = 4;
   } else {
      kstep   = 2;
   }

   /* at this point we will use a combination of a sieve and Miller-Rabin */

   if (bbs_style == 1) {
      /* if a mod 4 != 3 subtract the correct value to make it so */
      if ((a->dp[0] & 3u) != 3u) {
         if ((err = mp_sub_d(a, (a->dp[0] & 3u) + 1u, a)) != MP_OKAY) {
            return err;
         }
      }
   } else {
      if (MP_IS_EVEN(a)) {
         /* force odd */
         if ((err = mp_sub_d(a, 1uL, a)) != MP_OKAY) {
            return err;
         }
      }
   }

   /* generate the restable */
   for (x = 1; x < PRIVATE_MP_PRIME_TAB_SIZE; x++) {
      if ((err = mp_mod_d(a, s_mp_prime_tab[x], res_tab + x)) != MP_OKAY) {
         return err;
      }
   }

   /* init temp used for Miller-Rabin Testing */
   if ((err = mp_init(&b)) != MP_OKAY) {
      return err;
   }

   for (;;) {
      /* skip to the next non-trivially divisible candidate */
      step = 0;
      do {
         /* y == 1 if any residue was zero [e.g. cannot be prime] */
         y     =  0;

         /* increase step to next candidate */
         step += kstep;

         /* compute the new residue without using division */
         for (x = 1; x < PRIVATE_MP_PRIME_TAB_SIZE; x++) {
            /* add the step to each residue */
            res_tab[x] += kstep;

            /* subtract the modulus [instead of using division] */
            if (res_tab[x] >= s_mp_prime_tab[x]) {
               res_tab[x]  -= s_mp_prime_tab[x];
            }

            /* set flag if zero */
            if (res_tab[x] == 0u) {
               y = 1;
            }
         }
      } while ((y == 1) && (step < (((mp_digit)1 << MP_DIGIT_BIT) - kstep)));

      /* add the step */
      if ((err = mp_add_d(a, step, a)) != MP_OKAY) {
         goto LBL_ERR;
      }

      /* if didn't pass sieve and step == MP_MAX then skip test */
      if ((y == 1) && (step >= (((mp_digit)1 << MP_DIGIT_BIT) - kstep))) {
         continue;
      }

      if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY) {
         goto LBL_ERR;
      }
      if (res == MP_YES) {
         break;
      }
   }

   err = MP_OKAY;
LBL_ERR:
   mp_clear(&b);
   return err;
}

#endif