view libtommath/bn_mp_prime_strong_lucas_selfridge.c @ 1790:42745af83b7d

Introduce extra delay before closing unauthenticated sessions To make it harder for attackers, introduce a delay to keep an unauthenticated session open a bit longer, thus blocking a connection slot until after the delay. Without this, while there is a limit on the amount of attempts an attacker can make at the same time (MAX_UNAUTH_PER_IP), the time taken by dropbear to handle one attempt is still short and thus for each of the allowed parallel attempts many attempts can be chained one after the other. The attempt rate is then: "MAX_UNAUTH_PER_IP / <process time of one attempt>". With the delay, this rate becomes: "MAX_UNAUTH_PER_IP / UNAUTH_CLOSE_DELAY".
author Thomas De Schampheleire <thomas.de_schampheleire@nokia.com>
date Wed, 15 Feb 2017 13:53:04 +0100
parents 1051e4eea25a
children
line wrap: on
line source

#include "tommath_private.h"
#ifdef BN_MP_PRIME_STRONG_LUCAS_SELFRIDGE_C

/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */

/*
 *  See file bn_mp_prime_is_prime.c or the documentation in doc/bn.tex for the details
 */
#ifndef LTM_USE_ONLY_MR

/*
 *  8-bit is just too small. You can try the Frobenius test
 *  but that frobenius test can fail, too, for the same reason.
 */
#ifndef MP_8BIT

/*
 * multiply bigint a with int d and put the result in c
 * Like mp_mul_d() but with a signed long as the small input
 */
static mp_err s_mp_mul_si(const mp_int *a, int32_t d, mp_int *c)
{
   mp_int t;
   mp_err err;

   if ((err = mp_init(&t)) != MP_OKAY) {
      return err;
   }

   /*
    * mp_digit might be smaller than a long, which excludes
    * the use of mp_mul_d() here.
    */
   mp_set_i32(&t, d);
   err = mp_mul(a, &t, c);
   mp_clear(&t);
   return err;
}
/*
    Strong Lucas-Selfridge test.
    returns MP_YES if it is a strong L-S prime, MP_NO if it is composite

    Code ported from  Thomas Ray Nicely's implementation of the BPSW test
    at http://www.trnicely.net/misc/bpsw.html

    Freeware copyright (C) 2016 Thomas R. Nicely <http://www.trnicely.net>.
    Released into the public domain by the author, who disclaims any legal
    liability arising from its use

    The multi-line comments are made by Thomas R. Nicely and are copied verbatim.
    Additional comments marked "CZ" (without the quotes) are by the code-portist.

    (If that name sounds familiar, he is the guy who found the fdiv bug in the
     Pentium (P5x, I think) Intel processor)
*/
mp_err mp_prime_strong_lucas_selfridge(const mp_int *a, mp_bool *result)
{
   /* CZ TODO: choose better variable names! */
   mp_int Dz, gcd, Np1, Uz, Vz, U2mz, V2mz, Qmz, Q2mz, Qkdz, T1z, T2z, T3z, T4z, Q2kdz;
   /* CZ TODO: Some of them need the full 32 bit, hence the (temporary) exclusion of MP_8BIT */
   int32_t D, Ds, J, sign, P, Q, r, s, u, Nbits;
   mp_err err;
   mp_bool oddness;

   *result = MP_NO;
   /*
   Find the first element D in the sequence {5, -7, 9, -11, 13, ...}
   such that Jacobi(D,N) = -1 (Selfridge's algorithm). Theory
   indicates that, if N is not a perfect square, D will "nearly
   always" be "small." Just in case, an overflow trap for D is
   included.
   */

   if ((err = mp_init_multi(&Dz, &gcd, &Np1, &Uz, &Vz, &U2mz, &V2mz, &Qmz, &Q2mz, &Qkdz, &T1z, &T2z, &T3z, &T4z, &Q2kdz,
                            NULL)) != MP_OKAY) {
      return err;
   }

   D = 5;
   sign = 1;

   for (;;) {
      Ds   = sign * D;
      sign = -sign;
      mp_set_u32(&Dz, (uint32_t)D);
      if ((err = mp_gcd(a, &Dz, &gcd)) != MP_OKAY)                goto LBL_LS_ERR;

      /* if 1 < GCD < N then N is composite with factor "D", and
         Jacobi(D,N) is technically undefined (but often returned
         as zero). */
      if ((mp_cmp_d(&gcd, 1uL) == MP_GT) && (mp_cmp(&gcd, a) == MP_LT)) {
         goto LBL_LS_ERR;
      }
      if (Ds < 0) {
         Dz.sign = MP_NEG;
      }
      if ((err = mp_kronecker(&Dz, a, &J)) != MP_OKAY)            goto LBL_LS_ERR;

      if (J == -1) {
         break;
      }
      D += 2;

      if (D > (INT_MAX - 2)) {
         err = MP_VAL;
         goto LBL_LS_ERR;
      }
   }



   P = 1;              /* Selfridge's choice */
   Q = (1 - Ds) / 4;   /* Required so D = P*P - 4*Q */

   /* NOTE: The conditions (a) N does not divide Q, and
      (b) D is square-free or not a perfect square, are included by
      some authors; e.g., "Prime numbers and computer methods for
      factorization," Hans Riesel (2nd ed., 1994, Birkhauser, Boston),
      p. 130. For this particular application of Lucas sequences,
      these conditions were found to be immaterial. */

   /* Now calculate N - Jacobi(D,N) = N + 1 (even), and calculate the
      odd positive integer d and positive integer s for which
      N + 1 = 2^s*d (similar to the step for N - 1 in Miller's test).
      The strong Lucas-Selfridge test then returns N as a strong
      Lucas probable prime (slprp) if any of the following
      conditions is met: U_d=0, V_d=0, V_2d=0, V_4d=0, V_8d=0,
      V_16d=0, ..., etc., ending with V_{2^(s-1)*d}=V_{(N+1)/2}=0
      (all equalities mod N). Thus d is the highest index of U that
      must be computed (since V_2m is independent of U), compared
      to U_{N+1} for the standard Lucas-Selfridge test; and no
      index of V beyond (N+1)/2 is required, just as in the
      standard Lucas-Selfridge test. However, the quantity Q^d must
      be computed for use (if necessary) in the latter stages of
      the test. The result is that the strong Lucas-Selfridge test
      has a running time only slightly greater (order of 10 %) than
      that of the standard Lucas-Selfridge test, while producing
      only (roughly) 30 % as many pseudoprimes (and every strong
      Lucas pseudoprime is also a standard Lucas pseudoprime). Thus
      the evidence indicates that the strong Lucas-Selfridge test is
      more effective than the standard Lucas-Selfridge test, and a
      Baillie-PSW test based on the strong Lucas-Selfridge test
      should be more reliable. */

   if ((err = mp_add_d(a, 1uL, &Np1)) != MP_OKAY)                 goto LBL_LS_ERR;
   s = mp_cnt_lsb(&Np1);

   /* CZ
    * This should round towards zero because
    * Thomas R. Nicely used GMP's mpz_tdiv_q_2exp()
    * and mp_div_2d() is equivalent. Additionally:
    * dividing an even number by two does not produce
    * any leftovers.
    */
   if ((err = mp_div_2d(&Np1, s, &Dz, NULL)) != MP_OKAY)          goto LBL_LS_ERR;
   /* We must now compute U_d and V_d. Since d is odd, the accumulated
      values U and V are initialized to U_1 and V_1 (if the target
      index were even, U and V would be initialized instead to U_0=0
      and V_0=2). The values of U_2m and V_2m are also initialized to
      U_1 and V_1; the FOR loop calculates in succession U_2 and V_2,
      U_4 and V_4, U_8 and V_8, etc. If the corresponding bits
      (1, 2, 3, ...) of t are on (the zero bit having been accounted
      for in the initialization of U and V), these values are then
      combined with the previous totals for U and V, using the
      composition formulas for addition of indices. */

   mp_set(&Uz, 1uL);    /* U=U_1 */
   mp_set(&Vz, (mp_digit)P);    /* V=V_1 */
   mp_set(&U2mz, 1uL);  /* U_1 */
   mp_set(&V2mz, (mp_digit)P);  /* V_1 */

   mp_set_i32(&Qmz, Q);
   if ((err = mp_mul_2(&Qmz, &Q2mz)) != MP_OKAY)                  goto LBL_LS_ERR;
   /* Initializes calculation of Q^d */
   mp_set_i32(&Qkdz, Q);

   Nbits = mp_count_bits(&Dz);

   for (u = 1; u < Nbits; u++) { /* zero bit off, already accounted for */
      /* Formulas for doubling of indices (carried out mod N). Note that
       * the indices denoted as "2m" are actually powers of 2, specifically
       * 2^(ul-1) beginning each loop and 2^ul ending each loop.
       *
       * U_2m = U_m*V_m
       * V_2m = V_m*V_m - 2*Q^m
       */

      if ((err = mp_mul(&U2mz, &V2mz, &U2mz)) != MP_OKAY)         goto LBL_LS_ERR;
      if ((err = mp_mod(&U2mz, a, &U2mz)) != MP_OKAY)             goto LBL_LS_ERR;
      if ((err = mp_sqr(&V2mz, &V2mz)) != MP_OKAY)                goto LBL_LS_ERR;
      if ((err = mp_sub(&V2mz, &Q2mz, &V2mz)) != MP_OKAY)         goto LBL_LS_ERR;
      if ((err = mp_mod(&V2mz, a, &V2mz)) != MP_OKAY)             goto LBL_LS_ERR;

      /* Must calculate powers of Q for use in V_2m, also for Q^d later */
      if ((err = mp_sqr(&Qmz, &Qmz)) != MP_OKAY)                  goto LBL_LS_ERR;

      /* prevents overflow */ /* CZ  still necessary without a fixed prealloc'd mem.? */
      if ((err = mp_mod(&Qmz, a, &Qmz)) != MP_OKAY)               goto LBL_LS_ERR;
      if ((err = mp_mul_2(&Qmz, &Q2mz)) != MP_OKAY)               goto LBL_LS_ERR;

      if (s_mp_get_bit(&Dz, (unsigned int)u) == MP_YES) {
         /* Formulas for addition of indices (carried out mod N);
          *
          * U_(m+n) = (U_m*V_n + U_n*V_m)/2
          * V_(m+n) = (V_m*V_n + D*U_m*U_n)/2
          *
          * Be careful with division by 2 (mod N)!
          */
         if ((err = mp_mul(&U2mz, &Vz, &T1z)) != MP_OKAY)         goto LBL_LS_ERR;
         if ((err = mp_mul(&Uz, &V2mz, &T2z)) != MP_OKAY)         goto LBL_LS_ERR;
         if ((err = mp_mul(&V2mz, &Vz, &T3z)) != MP_OKAY)         goto LBL_LS_ERR;
         if ((err = mp_mul(&U2mz, &Uz, &T4z)) != MP_OKAY)         goto LBL_LS_ERR;
         if ((err = s_mp_mul_si(&T4z, Ds, &T4z)) != MP_OKAY)      goto LBL_LS_ERR;
         if ((err = mp_add(&T1z, &T2z, &Uz)) != MP_OKAY)          goto LBL_LS_ERR;
         if (MP_IS_ODD(&Uz)) {
            if ((err = mp_add(&Uz, a, &Uz)) != MP_OKAY)           goto LBL_LS_ERR;
         }
         /* CZ
          * This should round towards negative infinity because
          * Thomas R. Nicely used GMP's mpz_fdiv_q_2exp().
          * But mp_div_2() does not do so, it is truncating instead.
          */
         oddness = MP_IS_ODD(&Uz) ? MP_YES : MP_NO;
         if ((err = mp_div_2(&Uz, &Uz)) != MP_OKAY)               goto LBL_LS_ERR;
         if ((Uz.sign == MP_NEG) && (oddness != MP_NO)) {
            if ((err = mp_sub_d(&Uz, 1uL, &Uz)) != MP_OKAY)       goto LBL_LS_ERR;
         }
         if ((err = mp_add(&T3z, &T4z, &Vz)) != MP_OKAY)          goto LBL_LS_ERR;
         if (MP_IS_ODD(&Vz)) {
            if ((err = mp_add(&Vz, a, &Vz)) != MP_OKAY)           goto LBL_LS_ERR;
         }
         oddness = MP_IS_ODD(&Vz) ? MP_YES : MP_NO;
         if ((err = mp_div_2(&Vz, &Vz)) != MP_OKAY)               goto LBL_LS_ERR;
         if ((Vz.sign == MP_NEG) && (oddness != MP_NO)) {
            if ((err = mp_sub_d(&Vz, 1uL, &Vz)) != MP_OKAY)       goto LBL_LS_ERR;
         }
         if ((err = mp_mod(&Uz, a, &Uz)) != MP_OKAY)              goto LBL_LS_ERR;
         if ((err = mp_mod(&Vz, a, &Vz)) != MP_OKAY)              goto LBL_LS_ERR;

         /* Calculating Q^d for later use */
         if ((err = mp_mul(&Qkdz, &Qmz, &Qkdz)) != MP_OKAY)       goto LBL_LS_ERR;
         if ((err = mp_mod(&Qkdz, a, &Qkdz)) != MP_OKAY)          goto LBL_LS_ERR;
      }
   }

   /* If U_d or V_d is congruent to 0 mod N, then N is a prime or a
      strong Lucas pseudoprime. */
   if (MP_IS_ZERO(&Uz) || MP_IS_ZERO(&Vz)) {
      *result = MP_YES;
      goto LBL_LS_ERR;
   }

   /* NOTE: Ribenboim ("The new book of prime number records," 3rd ed.,
      1995/6) omits the condition V0 on p.142, but includes it on
      p. 130. The condition is NECESSARY; otherwise the test will
      return false negatives---e.g., the primes 29 and 2000029 will be
      returned as composite. */

   /* Otherwise, we must compute V_2d, V_4d, V_8d, ..., V_{2^(s-1)*d}
      by repeated use of the formula V_2m = V_m*V_m - 2*Q^m. If any of
      these are congruent to 0 mod N, then N is a prime or a strong
      Lucas pseudoprime. */

   /* Initialize 2*Q^(d*2^r) for V_2m */
   if ((err = mp_mul_2(&Qkdz, &Q2kdz)) != MP_OKAY)                goto LBL_LS_ERR;

   for (r = 1; r < s; r++) {
      if ((err = mp_sqr(&Vz, &Vz)) != MP_OKAY)                    goto LBL_LS_ERR;
      if ((err = mp_sub(&Vz, &Q2kdz, &Vz)) != MP_OKAY)            goto LBL_LS_ERR;
      if ((err = mp_mod(&Vz, a, &Vz)) != MP_OKAY)                 goto LBL_LS_ERR;
      if (MP_IS_ZERO(&Vz)) {
         *result = MP_YES;
         goto LBL_LS_ERR;
      }
      /* Calculate Q^{d*2^r} for next r (final iteration irrelevant). */
      if (r < (s - 1)) {
         if ((err = mp_sqr(&Qkdz, &Qkdz)) != MP_OKAY)             goto LBL_LS_ERR;
         if ((err = mp_mod(&Qkdz, a, &Qkdz)) != MP_OKAY)          goto LBL_LS_ERR;
         if ((err = mp_mul_2(&Qkdz, &Q2kdz)) != MP_OKAY)          goto LBL_LS_ERR;
      }
   }
LBL_LS_ERR:
   mp_clear_multi(&Q2kdz, &T4z, &T3z, &T2z, &T1z, &Qkdz, &Q2mz, &Qmz, &V2mz, &U2mz, &Vz, &Uz, &Np1, &gcd, &Dz, NULL);
   return err;
}
#endif
#endif
#endif